mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
407 lines
13 KiB
407 lines
13 KiB
3 years ago
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
|
||
|
namespace opencv_test { namespace {
|
||
|
|
||
|
#define SHOW_DEBUG_IMAGES 0
|
||
|
|
||
|
static
|
||
|
void warpFrame(const Mat& image, const Mat& depth, const Mat& rvec, const Mat& tvec, const Mat& K,
|
||
|
Mat& warpedImage, Mat& warpedDepth)
|
||
|
{
|
||
|
CV_Assert(!image.empty());
|
||
|
CV_Assert(image.type() == CV_8UC1);
|
||
|
|
||
|
CV_Assert(depth.size() == image.size());
|
||
|
CV_Assert(depth.type() == CV_32FC1);
|
||
|
|
||
|
CV_Assert(!rvec.empty());
|
||
|
CV_Assert(rvec.total() == 3);
|
||
|
CV_Assert(rvec.type() == CV_64FC1);
|
||
|
|
||
|
CV_Assert(!tvec.empty());
|
||
|
CV_Assert(tvec.size() == Size(1, 3));
|
||
|
CV_Assert(tvec.type() == CV_64FC1);
|
||
|
|
||
|
warpedImage.create(image.size(), CV_8UC1);
|
||
|
warpedImage = Scalar(0);
|
||
|
warpedDepth.create(image.size(), CV_32FC1);
|
||
|
warpedDepth = Scalar(FLT_MAX);
|
||
|
|
||
|
Mat cloud;
|
||
|
depthTo3d(depth, K, cloud);
|
||
|
Mat Rt = Mat::eye(4, 4, CV_64FC1);
|
||
|
{
|
||
|
Mat R, dst;
|
||
|
cv::Rodrigues(rvec, R);
|
||
|
|
||
|
dst = Rt(Rect(0,0,3,3));
|
||
|
R.copyTo(dst);
|
||
|
|
||
|
dst = Rt(Rect(3,0,1,3));
|
||
|
tvec.copyTo(dst);
|
||
|
}
|
||
|
Mat warpedCloud, warpedImagePoints;
|
||
|
perspectiveTransform(cloud, warpedCloud, Rt);
|
||
|
projectPoints(warpedCloud.reshape(3, 1), Mat(3,1,CV_32FC1, Scalar(0)), Mat(3,1,CV_32FC1, Scalar(0)), K, Mat(1,5,CV_32FC1, Scalar(0)), warpedImagePoints);
|
||
|
warpedImagePoints = warpedImagePoints.reshape(2, cloud.rows);
|
||
|
Rect r(0, 0, image.cols, image.rows);
|
||
|
for(int y = 0; y < cloud.rows; y++)
|
||
|
{
|
||
|
for(int x = 0; x < cloud.cols; x++)
|
||
|
{
|
||
|
Point p = warpedImagePoints.at<Point2f>(y,x);
|
||
|
if(r.contains(p))
|
||
|
{
|
||
|
float curDepth = warpedDepth.at<float>(p.y, p.x);
|
||
|
float newDepth = warpedCloud.at<Point3f>(y, x).z;
|
||
|
if(newDepth < curDepth && newDepth > 0)
|
||
|
{
|
||
|
warpedImage.at<uchar>(p.y, p.x) = image.at<uchar>(y,x);
|
||
|
warpedDepth.at<float>(p.y, p.x) = newDepth;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
warpedDepth.setTo(std::numeric_limits<float>::quiet_NaN(), warpedDepth > 100);
|
||
|
}
|
||
|
|
||
|
static
|
||
|
void dilateFrame(Mat& image, Mat& depth)
|
||
|
{
|
||
|
CV_Assert(!image.empty());
|
||
|
CV_Assert(image.type() == CV_8UC1);
|
||
|
|
||
|
CV_Assert(!depth.empty());
|
||
|
CV_Assert(depth.type() == CV_32FC1);
|
||
|
CV_Assert(depth.size() == image.size());
|
||
|
|
||
|
Mat mask(image.size(), CV_8UC1, Scalar(255));
|
||
|
for(int y = 0; y < depth.rows; y++)
|
||
|
for(int x = 0; x < depth.cols; x++)
|
||
|
if(cvIsNaN(depth.at<float>(y,x)) || depth.at<float>(y,x) > 10 || depth.at<float>(y,x) <= FLT_EPSILON)
|
||
|
mask.at<uchar>(y,x) = 0;
|
||
|
|
||
|
image.setTo(255, ~mask);
|
||
|
Mat minImage;
|
||
|
erode(image, minImage, Mat());
|
||
|
|
||
|
image.setTo(0, ~mask);
|
||
|
Mat maxImage;
|
||
|
dilate(image, maxImage, Mat());
|
||
|
|
||
|
depth.setTo(FLT_MAX, ~mask);
|
||
|
Mat minDepth;
|
||
|
erode(depth, minDepth, Mat());
|
||
|
|
||
|
depth.setTo(0, ~mask);
|
||
|
Mat maxDepth;
|
||
|
dilate(depth, maxDepth, Mat());
|
||
|
|
||
|
Mat dilatedMask;
|
||
|
dilate(mask, dilatedMask, Mat(), Point(-1,-1), 1);
|
||
|
for(int y = 0; y < depth.rows; y++)
|
||
|
for(int x = 0; x < depth.cols; x++)
|
||
|
if(!mask.at<uchar>(y,x) && dilatedMask.at<uchar>(y,x))
|
||
|
{
|
||
|
image.at<uchar>(y,x) = static_cast<uchar>(0.5f * (static_cast<float>(minImage.at<uchar>(y,x)) +
|
||
|
static_cast<float>(maxImage.at<uchar>(y,x))));
|
||
|
depth.at<float>(y,x) = 0.5f * (minDepth.at<float>(y,x) + maxDepth.at<float>(y,x));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
class OdometryTest
|
||
|
{
|
||
|
public:
|
||
|
OdometryTest(const Ptr<Odometry>& _odometry,
|
||
|
double _maxError1,
|
||
|
double _maxError5,
|
||
|
double _idError = DBL_EPSILON) :
|
||
|
odometry(_odometry),
|
||
|
maxError1(_maxError1),
|
||
|
maxError5(_maxError5),
|
||
|
idError(_idError)
|
||
|
{ }
|
||
|
|
||
|
void readData(Mat& image, Mat& depth) const;
|
||
|
static Mat getCameraMatrix()
|
||
|
{
|
||
|
float fx = 525.0f, // default
|
||
|
fy = 525.0f,
|
||
|
cx = 319.5f,
|
||
|
cy = 239.5f;
|
||
|
Matx33f K(fx, 0, cx,
|
||
|
0, fy, cy,
|
||
|
0, 0, 1);
|
||
|
return Mat(K);
|
||
|
}
|
||
|
static void generateRandomTransformation(Mat& R, Mat& t);
|
||
|
|
||
|
void run();
|
||
|
void checkUMats();
|
||
|
|
||
|
Ptr<Odometry> odometry;
|
||
|
double maxError1;
|
||
|
double maxError5;
|
||
|
double idError;
|
||
|
};
|
||
|
|
||
|
|
||
|
void OdometryTest::readData(Mat& image, Mat& depth) const
|
||
|
{
|
||
|
std::string dataPath = cvtest::TS::ptr()->get_data_path();
|
||
|
std::string imageFilename = dataPath + "/cv/rgbd/rgb.png";
|
||
|
std::string depthFilename = dataPath + "/cv/rgbd/depth.png";
|
||
|
|
||
|
image = imread(imageFilename, 0);
|
||
|
depth = imread(depthFilename, -1);
|
||
|
|
||
|
if(image.empty())
|
||
|
{
|
||
|
FAIL() << "Image " << imageFilename.c_str() << " can not be read" << std::endl;
|
||
|
}
|
||
|
if(depth.empty())
|
||
|
{
|
||
|
FAIL() << "Depth" << depthFilename.c_str() << "can not be read" << std::endl;
|
||
|
}
|
||
|
|
||
|
CV_DbgAssert(image.type() == CV_8UC1);
|
||
|
CV_DbgAssert(depth.type() == CV_16UC1);
|
||
|
{
|
||
|
Mat depth_flt;
|
||
|
depth.convertTo(depth_flt, CV_32FC1, 1.f/5000.f);
|
||
|
depth_flt.setTo(std::numeric_limits<float>::quiet_NaN(), depth_flt < FLT_EPSILON);
|
||
|
depth = depth_flt;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void OdometryTest::generateRandomTransformation(Mat& rvec, Mat& tvec)
|
||
|
{
|
||
|
const float maxRotation = (float)(3.f / 180.f * CV_PI); //rad
|
||
|
const float maxTranslation = 0.02f; //m
|
||
|
|
||
|
RNG& rng = theRNG();
|
||
|
rvec.create(3, 1, CV_64FC1);
|
||
|
tvec.create(3, 1, CV_64FC1);
|
||
|
|
||
|
randu(rvec, Scalar(-1000), Scalar(1000));
|
||
|
normalize(rvec, rvec, rng.uniform(0.007f, maxRotation));
|
||
|
|
||
|
randu(tvec, Scalar(-1000), Scalar(1000));
|
||
|
normalize(tvec, tvec, rng.uniform(0.008f, maxTranslation));
|
||
|
}
|
||
|
|
||
|
void OdometryTest::checkUMats()
|
||
|
{
|
||
|
Mat K = getCameraMatrix();
|
||
|
|
||
|
Mat image, depth;
|
||
|
readData(image, depth);
|
||
|
|
||
|
odometry->setCameraMatrix(K);
|
||
|
|
||
|
Mat calcRt;
|
||
|
|
||
|
UMat uimage, udepth, umask;
|
||
|
image.copyTo(uimage);
|
||
|
depth.copyTo(udepth);
|
||
|
Mat(image.size(), CV_8UC1, Scalar(255)).copyTo(umask);
|
||
|
|
||
|
bool isComputed = odometry->compute(uimage, udepth, umask,
|
||
|
uimage, udepth, umask,
|
||
|
calcRt);
|
||
|
ASSERT_TRUE(isComputed);
|
||
|
double diff = cv::norm(calcRt, Mat::eye(4, 4, CV_64FC1));
|
||
|
if (diff > idError)
|
||
|
{
|
||
|
FAIL() << "Incorrect transformation between the same frame (not the identity matrix), diff = " << diff << std::endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void OdometryTest::run()
|
||
|
{
|
||
|
Mat K = getCameraMatrix();
|
||
|
|
||
|
Mat image, depth;
|
||
|
readData(image, depth);
|
||
|
|
||
|
odometry->setCameraMatrix(K);
|
||
|
|
||
|
Mat calcRt;
|
||
|
|
||
|
// 1. Try to find Rt between the same frame (try masks also).
|
||
|
Mat mask(image.size(), CV_8UC1, Scalar(255));
|
||
|
bool isComputed = odometry->compute(image, depth, mask, image, depth, mask, calcRt);
|
||
|
if(!isComputed)
|
||
|
{
|
||
|
FAIL() << "Can not find Rt between the same frame" << std::endl;
|
||
|
}
|
||
|
double diff = cv::norm(calcRt, Mat::eye(4,4,CV_64FC1));
|
||
|
if(diff > idError)
|
||
|
{
|
||
|
FAIL() << "Incorrect transformation between the same frame (not the identity matrix), diff = " << diff << std::endl;
|
||
|
}
|
||
|
|
||
|
// 2. Generate random rigid body motion in some ranges several times (iterCount).
|
||
|
// On each iteration an input frame is warped using generated transformation.
|
||
|
// Odometry is run on the following pair: the original frame and the warped one.
|
||
|
// Comparing a computed transformation with an applied one we compute 2 errors:
|
||
|
// better_1time_count - count of poses which error is less than ground truth pose,
|
||
|
// better_5times_count - count of poses which error is 5 times less than ground truth pose.
|
||
|
int iterCount = 100;
|
||
|
int better_1time_count = 0;
|
||
|
int better_5times_count = 0;
|
||
|
for(int iter = 0; iter < iterCount; iter++)
|
||
|
{
|
||
|
Mat rvec, tvec;
|
||
|
generateRandomTransformation(rvec, tvec);
|
||
|
Mat warpedImage, warpedDepth;
|
||
|
warpFrame(image, depth, rvec, tvec, K, warpedImage, warpedDepth);
|
||
|
dilateFrame(warpedImage, warpedDepth); // due to inaccuracy after warping
|
||
|
|
||
|
isComputed = odometry->compute(image, depth, mask, warpedImage, warpedDepth, mask, calcRt);
|
||
|
if(!isComputed)
|
||
|
continue;
|
||
|
|
||
|
Mat calcR = calcRt(Rect(0,0,3,3)), calcRvec;
|
||
|
cv::Rodrigues(calcR, calcRvec);
|
||
|
calcRvec = calcRvec.reshape(rvec.channels(), rvec.rows);
|
||
|
Mat calcTvec = calcRt(Rect(3,0,1,3));
|
||
|
|
||
|
#if SHOW_DEBUG_IMAGES
|
||
|
imshow("image", image);
|
||
|
imshow("warpedImage", warpedImage);
|
||
|
Mat resultImage, resultDepth;
|
||
|
warpFrame(image, depth, calcRvec, calcTvec, K, resultImage, resultDepth);
|
||
|
imshow("resultImage", resultImage);
|
||
|
waitKey();
|
||
|
#endif
|
||
|
|
||
|
// compare rotation
|
||
|
double rdiffnorm = cv::norm(rvec - calcRvec),
|
||
|
rnorm = cv::norm(rvec);
|
||
|
double tdiffnorm = cv::norm(tvec - calcTvec),
|
||
|
tnorm = cv::norm(tvec);
|
||
|
if(rdiffnorm < rnorm && tdiffnorm < tnorm)
|
||
|
better_1time_count++;
|
||
|
if(5. * rdiffnorm < rnorm && 5 * tdiffnorm < tnorm)
|
||
|
better_5times_count++;
|
||
|
|
||
|
CV_LOG_INFO(NULL, "Iter " << iter);
|
||
|
CV_LOG_INFO(NULL, "rdiffnorm " << rdiffnorm << "; rnorm " << rnorm);
|
||
|
CV_LOG_INFO(NULL, "tdiffnorm " << tdiffnorm << "; tnorm " << tnorm);
|
||
|
|
||
|
CV_LOG_INFO(NULL, "better_1time_count " << better_1time_count << "; better_5time_count " << better_5times_count);
|
||
|
}
|
||
|
|
||
|
if(static_cast<double>(better_1time_count) < maxError1 * static_cast<double>(iterCount))
|
||
|
{
|
||
|
FAIL() << "Incorrect count of accurate poses [1st case]: "
|
||
|
<< static_cast<double>(better_1time_count) << " / "
|
||
|
<< maxError1 * static_cast<double>(iterCount) << std::endl;
|
||
|
}
|
||
|
|
||
|
if(static_cast<double>(better_5times_count) < maxError5 * static_cast<double>(iterCount))
|
||
|
{
|
||
|
FAIL() << "Incorrect count of accurate poses [2nd case]: "
|
||
|
<< static_cast<double>(better_5times_count) << " / "
|
||
|
<< maxError5 * static_cast<double>(iterCount) << std::endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/****************************************************************************************\
|
||
|
* Tests registrations *
|
||
|
\****************************************************************************************/
|
||
|
|
||
|
TEST(RGBD_Odometry_Rgbd, algorithmic)
|
||
|
{
|
||
|
OdometryTest test(cv::Odometry::createFromName("RgbdOdometry"), 0.99, 0.89);
|
||
|
test.run();
|
||
|
}
|
||
|
|
||
|
TEST(RGBD_Odometry_ICP, algorithmic)
|
||
|
{
|
||
|
OdometryTest test(cv::Odometry::createFromName("ICPOdometry"), 0.99, 0.99);
|
||
|
test.run();
|
||
|
}
|
||
|
|
||
|
TEST(RGBD_Odometry_RgbdICP, algorithmic)
|
||
|
{
|
||
|
OdometryTest test(cv::Odometry::createFromName("RgbdICPOdometry"), 0.99, 0.99);
|
||
|
test.run();
|
||
|
}
|
||
|
|
||
|
TEST(RGBD_Odometry_FastICP, algorithmic)
|
||
|
{
|
||
|
OdometryTest test(cv::Odometry::createFromName("FastICPOdometry"), 0.99, 0.99, FLT_EPSILON);
|
||
|
test.run();
|
||
|
}
|
||
|
|
||
|
TEST(RGBD_Odometry_Rgbd, UMats)
|
||
|
{
|
||
|
OdometryTest test(cv::Odometry::createFromName("RgbdOdometry"), 0.99, 0.89);
|
||
|
test.checkUMats();
|
||
|
}
|
||
|
|
||
|
TEST(RGBD_Odometry_ICP, UMats)
|
||
|
{
|
||
|
OdometryTest test(cv::Odometry::createFromName("ICPOdometry"), 0.99, 0.99);
|
||
|
test.checkUMats();
|
||
|
}
|
||
|
|
||
|
TEST(RGBD_Odometry_RgbdICP, UMats)
|
||
|
{
|
||
|
OdometryTest test(cv::Odometry::createFromName("RgbdICPOdometry"), 0.99, 0.99);
|
||
|
test.checkUMats();
|
||
|
}
|
||
|
|
||
|
TEST(RGBD_Odometry_FastICP, UMats)
|
||
|
{
|
||
|
OdometryTest test(cv::Odometry::createFromName("FastICPOdometry"), 0.99, 0.99, FLT_EPSILON);
|
||
|
test.checkUMats();
|
||
|
}
|
||
|
|
||
|
|
||
|
/****************************************************************************************\
|
||
|
* Depth to 3d tests *
|
||
|
\****************************************************************************************/
|
||
|
|
||
|
TEST(RGBD_DepthTo3d, compute)
|
||
|
{
|
||
|
// K from a VGA Kinect
|
||
|
Mat K = OdometryTest::getCameraMatrix();
|
||
|
|
||
|
// Create a random depth image
|
||
|
RNG rng;
|
||
|
Mat_<float> depth(480, 640);
|
||
|
rng.fill(depth, RNG::UNIFORM, 0, 100);
|
||
|
|
||
|
// Create some 3d points on the plane
|
||
|
int rows = depth.rows, cols = depth.cols;
|
||
|
Mat_<Vec3f> points3d;
|
||
|
depthTo3d(depth, K, points3d);
|
||
|
|
||
|
// Make sure the points belong to the plane
|
||
|
Mat points = points3d.reshape(1, rows * cols);
|
||
|
Mat image_points;
|
||
|
Mat rvec;
|
||
|
cv::Rodrigues(Mat::eye(3, 3, CV_32F), rvec);
|
||
|
Mat tvec = (Mat_<float>(1, 3) << 0, 0, 0);
|
||
|
projectPoints(points, rvec, tvec, K, Mat(), image_points);
|
||
|
image_points = image_points.reshape(2, rows);
|
||
|
|
||
|
float avg_diff = 0;
|
||
|
for (int y = 0; y < rows; ++y)
|
||
|
for (int x = 0; x < cols; ++x)
|
||
|
avg_diff += (float)cv::norm(image_points.at<Vec2f>(y, x) - Vec2f((float)x, (float)y));
|
||
|
|
||
|
// Verify the function works
|
||
|
ASSERT_LE(avg_diff / rows / cols, 1e-4) << "Average error for ground truth is: " << (avg_diff / rows / cols);
|
||
|
}
|
||
|
|
||
|
|
||
|
}} // namespace
|