mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
389 lines
8.2 KiB
389 lines
8.2 KiB
15 years ago
|
#include "clapack.h"
|
||
|
|
||
|
/* Subroutine */ int dlasq4_(integer *i0, integer *n0, doublereal *z__,
|
||
|
integer *pp, integer *n0in, doublereal *dmin__, doublereal *dmin1,
|
||
|
doublereal *dmin2, doublereal *dn, doublereal *dn1, doublereal *dn2,
|
||
|
doublereal *tau, integer *ttype)
|
||
|
{
|
||
|
/* Initialized data */
|
||
|
|
||
|
static doublereal g = 0.;
|
||
|
|
||
|
/* System generated locals */
|
||
|
integer i__1;
|
||
|
doublereal d__1, d__2;
|
||
|
|
||
|
/* Builtin functions */
|
||
|
double sqrt(doublereal);
|
||
|
|
||
|
/* Local variables */
|
||
|
doublereal s, a2, b1, b2;
|
||
|
integer i4, nn, np;
|
||
|
doublereal gam, gap1, gap2;
|
||
|
|
||
|
|
||
|
/* -- LAPACK auxiliary routine (version 3.1) -- */
|
||
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
||
|
/* November 2006 */
|
||
|
|
||
|
/* .. Scalar Arguments .. */
|
||
|
/* .. */
|
||
|
/* .. Array Arguments .. */
|
||
|
/* .. */
|
||
|
|
||
|
/* Purpose */
|
||
|
/* ======= */
|
||
|
|
||
|
/* DLASQ4 computes an approximation TAU to the smallest eigenvalue */
|
||
|
/* using values of d from the previous transform. */
|
||
|
|
||
|
/* I0 (input) INTEGER */
|
||
|
/* First index. */
|
||
|
|
||
|
/* N0 (input) INTEGER */
|
||
|
/* Last index. */
|
||
|
|
||
|
/* Z (input) DOUBLE PRECISION array, dimension ( 4*N ) */
|
||
|
/* Z holds the qd array. */
|
||
|
|
||
|
/* PP (input) INTEGER */
|
||
|
/* PP=0 for ping, PP=1 for pong. */
|
||
|
|
||
|
/* N0IN (input) INTEGER */
|
||
|
/* The value of N0 at start of EIGTEST. */
|
||
|
|
||
|
/* DMIN (input) DOUBLE PRECISION */
|
||
|
/* Minimum value of d. */
|
||
|
|
||
|
/* DMIN1 (input) DOUBLE PRECISION */
|
||
|
/* Minimum value of d, excluding D( N0 ). */
|
||
|
|
||
|
/* DMIN2 (input) DOUBLE PRECISION */
|
||
|
/* Minimum value of d, excluding D( N0 ) and D( N0-1 ). */
|
||
|
|
||
|
/* DN (input) DOUBLE PRECISION */
|
||
|
/* d(N) */
|
||
|
|
||
|
/* DN1 (input) DOUBLE PRECISION */
|
||
|
/* d(N-1) */
|
||
|
|
||
|
/* DN2 (input) DOUBLE PRECISION */
|
||
|
/* d(N-2) */
|
||
|
|
||
|
/* TAU (output) DOUBLE PRECISION */
|
||
|
/* This is the shift. */
|
||
|
|
||
|
/* TTYPE (output) INTEGER */
|
||
|
/* Shift type. */
|
||
|
|
||
|
/* Further Details */
|
||
|
/* =============== */
|
||
|
/* CNST1 = 9/16 */
|
||
|
|
||
|
/* ===================================================================== */
|
||
|
|
||
|
/* .. Parameters .. */
|
||
|
/* .. */
|
||
|
/* .. Local Scalars .. */
|
||
|
/* .. */
|
||
|
/* .. Intrinsic Functions .. */
|
||
|
/* .. */
|
||
|
/* .. Save statement .. */
|
||
|
/* .. */
|
||
|
/* .. Data statement .. */
|
||
|
/* Parameter adjustments */
|
||
|
--z__;
|
||
|
|
||
|
/* Function Body */
|
||
|
/* .. */
|
||
|
/* .. Executable Statements .. */
|
||
|
|
||
|
/* A negative DMIN forces the shift to take that absolute value */
|
||
|
/* TTYPE records the type of shift. */
|
||
|
|
||
|
if (*dmin__ <= 0.) {
|
||
|
*tau = -(*dmin__);
|
||
|
*ttype = -1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
nn = (*n0 << 2) + *pp;
|
||
|
if (*n0in == *n0) {
|
||
|
|
||
|
/* No eigenvalues deflated. */
|
||
|
|
||
|
if (*dmin__ == *dn || *dmin__ == *dn1) {
|
||
|
|
||
|
b1 = sqrt(z__[nn - 3]) * sqrt(z__[nn - 5]);
|
||
|
b2 = sqrt(z__[nn - 7]) * sqrt(z__[nn - 9]);
|
||
|
a2 = z__[nn - 7] + z__[nn - 5];
|
||
|
|
||
|
/* Cases 2 and 3. */
|
||
|
|
||
|
if (*dmin__ == *dn && *dmin1 == *dn1) {
|
||
|
gap2 = *dmin2 - a2 - *dmin2 * .25;
|
||
|
if (gap2 > 0. && gap2 > b2) {
|
||
|
gap1 = a2 - *dn - b2 / gap2 * b2;
|
||
|
} else {
|
||
|
gap1 = a2 - *dn - (b1 + b2);
|
||
|
}
|
||
|
if (gap1 > 0. && gap1 > b1) {
|
||
|
/* Computing MAX */
|
||
|
d__1 = *dn - b1 / gap1 * b1, d__2 = *dmin__ * .5;
|
||
|
s = max(d__1,d__2);
|
||
|
*ttype = -2;
|
||
|
} else {
|
||
|
s = 0.;
|
||
|
if (*dn > b1) {
|
||
|
s = *dn - b1;
|
||
|
}
|
||
|
if (a2 > b1 + b2) {
|
||
|
/* Computing MIN */
|
||
|
d__1 = s, d__2 = a2 - (b1 + b2);
|
||
|
s = min(d__1,d__2);
|
||
|
}
|
||
|
/* Computing MAX */
|
||
|
d__1 = s, d__2 = *dmin__ * .333;
|
||
|
s = max(d__1,d__2);
|
||
|
*ttype = -3;
|
||
|
}
|
||
|
} else {
|
||
|
|
||
|
/* Case 4. */
|
||
|
|
||
|
*ttype = -4;
|
||
|
s = *dmin__ * .25;
|
||
|
if (*dmin__ == *dn) {
|
||
|
gam = *dn;
|
||
|
a2 = 0.;
|
||
|
if (z__[nn - 5] > z__[nn - 7]) {
|
||
|
return 0;
|
||
|
}
|
||
|
b2 = z__[nn - 5] / z__[nn - 7];
|
||
|
np = nn - 9;
|
||
|
} else {
|
||
|
np = nn - (*pp << 1);
|
||
|
b2 = z__[np - 2];
|
||
|
gam = *dn1;
|
||
|
if (z__[np - 4] > z__[np - 2]) {
|
||
|
return 0;
|
||
|
}
|
||
|
a2 = z__[np - 4] / z__[np - 2];
|
||
|
if (z__[nn - 9] > z__[nn - 11]) {
|
||
|
return 0;
|
||
|
}
|
||
|
b2 = z__[nn - 9] / z__[nn - 11];
|
||
|
np = nn - 13;
|
||
|
}
|
||
|
|
||
|
/* Approximate contribution to norm squared from I < NN-1. */
|
||
|
|
||
|
a2 += b2;
|
||
|
i__1 = (*i0 << 2) - 1 + *pp;
|
||
|
for (i4 = np; i4 >= i__1; i4 += -4) {
|
||
|
if (b2 == 0.) {
|
||
|
goto L20;
|
||
|
}
|
||
|
b1 = b2;
|
||
|
if (z__[i4] > z__[i4 - 2]) {
|
||
|
return 0;
|
||
|
}
|
||
|
b2 *= z__[i4] / z__[i4 - 2];
|
||
|
a2 += b2;
|
||
|
if (max(b2,b1) * 100. < a2 || .563 < a2) {
|
||
|
goto L20;
|
||
|
}
|
||
|
/* L10: */
|
||
|
}
|
||
|
L20:
|
||
|
a2 *= 1.05;
|
||
|
|
||
|
/* Rayleigh quotient residual bound. */
|
||
|
|
||
|
if (a2 < .563) {
|
||
|
s = gam * (1. - sqrt(a2)) / (a2 + 1.);
|
||
|
}
|
||
|
}
|
||
|
} else if (*dmin__ == *dn2) {
|
||
|
|
||
|
/* Case 5. */
|
||
|
|
||
|
*ttype = -5;
|
||
|
s = *dmin__ * .25;
|
||
|
|
||
|
/* Compute contribution to norm squared from I > NN-2. */
|
||
|
|
||
|
np = nn - (*pp << 1);
|
||
|
b1 = z__[np - 2];
|
||
|
b2 = z__[np - 6];
|
||
|
gam = *dn2;
|
||
|
if (z__[np - 8] > b2 || z__[np - 4] > b1) {
|
||
|
return 0;
|
||
|
}
|
||
|
a2 = z__[np - 8] / b2 * (z__[np - 4] / b1 + 1.);
|
||
|
|
||
|
/* Approximate contribution to norm squared from I < NN-2. */
|
||
|
|
||
|
if (*n0 - *i0 > 2) {
|
||
|
b2 = z__[nn - 13] / z__[nn - 15];
|
||
|
a2 += b2;
|
||
|
i__1 = (*i0 << 2) - 1 + *pp;
|
||
|
for (i4 = nn - 17; i4 >= i__1; i4 += -4) {
|
||
|
if (b2 == 0.) {
|
||
|
goto L40;
|
||
|
}
|
||
|
b1 = b2;
|
||
|
if (z__[i4] > z__[i4 - 2]) {
|
||
|
return 0;
|
||
|
}
|
||
|
b2 *= z__[i4] / z__[i4 - 2];
|
||
|
a2 += b2;
|
||
|
if (max(b2,b1) * 100. < a2 || .563 < a2) {
|
||
|
goto L40;
|
||
|
}
|
||
|
/* L30: */
|
||
|
}
|
||
|
L40:
|
||
|
a2 *= 1.05;
|
||
|
}
|
||
|
|
||
|
if (a2 < .563) {
|
||
|
s = gam * (1. - sqrt(a2)) / (a2 + 1.);
|
||
|
}
|
||
|
} else {
|
||
|
|
||
|
/* Case 6, no information to guide us. */
|
||
|
|
||
|
if (*ttype == -6) {
|
||
|
g += (1. - g) * .333;
|
||
|
} else if (*ttype == -18) {
|
||
|
g = .083250000000000005;
|
||
|
} else {
|
||
|
g = .25;
|
||
|
}
|
||
|
s = g * *dmin__;
|
||
|
*ttype = -6;
|
||
|
}
|
||
|
|
||
|
} else if (*n0in == *n0 + 1) {
|
||
|
|
||
|
/* One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN. */
|
||
|
|
||
|
if (*dmin1 == *dn1 && *dmin2 == *dn2) {
|
||
|
|
||
|
/* Cases 7 and 8. */
|
||
|
|
||
|
*ttype = -7;
|
||
|
s = *dmin1 * .333;
|
||
|
if (z__[nn - 5] > z__[nn - 7]) {
|
||
|
return 0;
|
||
|
}
|
||
|
b1 = z__[nn - 5] / z__[nn - 7];
|
||
|
b2 = b1;
|
||
|
if (b2 == 0.) {
|
||
|
goto L60;
|
||
|
}
|
||
|
i__1 = (*i0 << 2) - 1 + *pp;
|
||
|
for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) {
|
||
|
a2 = b1;
|
||
|
if (z__[i4] > z__[i4 - 2]) {
|
||
|
return 0;
|
||
|
}
|
||
|
b1 *= z__[i4] / z__[i4 - 2];
|
||
|
b2 += b1;
|
||
|
if (max(b1,a2) * 100. < b2) {
|
||
|
goto L60;
|
||
|
}
|
||
|
/* L50: */
|
||
|
}
|
||
|
L60:
|
||
|
b2 = sqrt(b2 * 1.05);
|
||
|
/* Computing 2nd power */
|
||
|
d__1 = b2;
|
||
|
a2 = *dmin1 / (d__1 * d__1 + 1.);
|
||
|
gap2 = *dmin2 * .5 - a2;
|
||
|
if (gap2 > 0. && gap2 > b2 * a2) {
|
||
|
/* Computing MAX */
|
||
|
d__1 = s, d__2 = a2 * (1. - a2 * 1.01 * (b2 / gap2) * b2);
|
||
|
s = max(d__1,d__2);
|
||
|
} else {
|
||
|
/* Computing MAX */
|
||
|
d__1 = s, d__2 = a2 * (1. - b2 * 1.01);
|
||
|
s = max(d__1,d__2);
|
||
|
*ttype = -8;
|
||
|
}
|
||
|
} else {
|
||
|
|
||
|
/* Case 9. */
|
||
|
|
||
|
s = *dmin1 * .25;
|
||
|
if (*dmin1 == *dn1) {
|
||
|
s = *dmin1 * .5;
|
||
|
}
|
||
|
*ttype = -9;
|
||
|
}
|
||
|
|
||
|
} else if (*n0in == *n0 + 2) {
|
||
|
|
||
|
/* Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN. */
|
||
|
|
||
|
/* Cases 10 and 11. */
|
||
|
|
||
|
if (*dmin2 == *dn2 && z__[nn - 5] * 2. < z__[nn - 7]) {
|
||
|
*ttype = -10;
|
||
|
s = *dmin2 * .333;
|
||
|
if (z__[nn - 5] > z__[nn - 7]) {
|
||
|
return 0;
|
||
|
}
|
||
|
b1 = z__[nn - 5] / z__[nn - 7];
|
||
|
b2 = b1;
|
||
|
if (b2 == 0.) {
|
||
|
goto L80;
|
||
|
}
|
||
|
i__1 = (*i0 << 2) - 1 + *pp;
|
||
|
for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) {
|
||
|
if (z__[i4] > z__[i4 - 2]) {
|
||
|
return 0;
|
||
|
}
|
||
|
b1 *= z__[i4] / z__[i4 - 2];
|
||
|
b2 += b1;
|
||
|
if (b1 * 100. < b2) {
|
||
|
goto L80;
|
||
|
}
|
||
|
/* L70: */
|
||
|
}
|
||
|
L80:
|
||
|
b2 = sqrt(b2 * 1.05);
|
||
|
/* Computing 2nd power */
|
||
|
d__1 = b2;
|
||
|
a2 = *dmin2 / (d__1 * d__1 + 1.);
|
||
|
gap2 = z__[nn - 7] + z__[nn - 9] - sqrt(z__[nn - 11]) * sqrt(z__[
|
||
|
nn - 9]) - a2;
|
||
|
if (gap2 > 0. && gap2 > b2 * a2) {
|
||
|
/* Computing MAX */
|
||
|
d__1 = s, d__2 = a2 * (1. - a2 * 1.01 * (b2 / gap2) * b2);
|
||
|
s = max(d__1,d__2);
|
||
|
} else {
|
||
|
/* Computing MAX */
|
||
|
d__1 = s, d__2 = a2 * (1. - b2 * 1.01);
|
||
|
s = max(d__1,d__2);
|
||
|
}
|
||
|
} else {
|
||
|
s = *dmin2 * .25;
|
||
|
*ttype = -11;
|
||
|
}
|
||
|
} else if (*n0in > *n0 + 2) {
|
||
|
|
||
|
/* Case 12, more than two eigenvalues deflated. No information. */
|
||
|
|
||
|
s = 0.;
|
||
|
*ttype = -12;
|
||
|
}
|
||
|
|
||
|
*tau = s;
|
||
|
return 0;
|
||
|
|
||
|
/* End of DLASQ4 */
|
||
|
|
||
|
} /* dlasq4_ */
|