mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
134 lines
4.7 KiB
134 lines
4.7 KiB
4 years ago
|
#include <opencv2/imgproc.hpp>
|
||
|
#include <opencv2/gapi/infer/ie.hpp>
|
||
|
#include <opencv2/gapi/cpu/gcpukernel.hpp>
|
||
|
#include <opencv2/gapi/streaming/cap.hpp>
|
||
|
#include <opencv2/highgui.hpp>
|
||
|
|
||
|
const std::string keys =
|
||
|
"{ h help | | Print this help message }"
|
||
|
"{ input | | Path to the input video file }"
|
||
|
"{ output | | Path to the output video file }"
|
||
|
"{ ssm | semantic-segmentation-adas-0001.xml | Path to OpenVINO IE semantic segmentation model (.xml) }";
|
||
|
|
||
|
// 20 colors for 20 classes of semantic-segmentation-adas-0001
|
||
|
const std::vector<cv::Vec3b> colors = {
|
||
|
{ 128, 64, 128 },
|
||
|
{ 232, 35, 244 },
|
||
|
{ 70, 70, 70 },
|
||
|
{ 156, 102, 102 },
|
||
|
{ 153, 153, 190 },
|
||
|
{ 153, 153, 153 },
|
||
|
{ 30, 170, 250 },
|
||
|
{ 0, 220, 220 },
|
||
|
{ 35, 142, 107 },
|
||
|
{ 152, 251, 152 },
|
||
|
{ 180, 130, 70 },
|
||
|
{ 60, 20, 220 },
|
||
|
{ 0, 0, 255 },
|
||
|
{ 142, 0, 0 },
|
||
|
{ 70, 0, 0 },
|
||
|
{ 100, 60, 0 },
|
||
|
{ 90, 0, 0 },
|
||
|
{ 230, 0, 0 },
|
||
|
{ 32, 11, 119 },
|
||
|
{ 0, 74, 111 },
|
||
|
};
|
||
|
|
||
|
namespace {
|
||
|
std::string get_weights_path(const std::string &model_path) {
|
||
|
const auto EXT_LEN = 4u;
|
||
|
const auto sz = model_path.size();
|
||
|
CV_Assert(sz > EXT_LEN);
|
||
|
|
||
|
auto ext = model_path.substr(sz - EXT_LEN);
|
||
|
std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
|
||
|
return static_cast<unsigned char>(std::tolower(c));
|
||
|
});
|
||
|
CV_Assert(ext == ".xml");
|
||
|
return model_path.substr(0u, sz - EXT_LEN) + ".bin";
|
||
|
}
|
||
|
} // anonymous namespace
|
||
|
|
||
|
namespace custom {
|
||
|
G_API_OP(PostProcessing, <cv::GMat(cv::GMat, cv::GMat)>, "sample.custom.post_processing") {
|
||
|
static cv::GMatDesc outMeta(const cv::GMatDesc &in, const cv::GMatDesc &) {
|
||
|
return in;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
GAPI_OCV_KERNEL(OCVPostProcessing, PostProcessing) {
|
||
|
static void run(const cv::Mat &in, const cv::Mat &detected_classes, cv::Mat &out) {
|
||
|
// This kernel constructs output image by class table and colors vector
|
||
|
|
||
|
// The semantic-segmentation-adas-0001 output a blob with the shape
|
||
|
// [B, C=1, H=1024, W=2048]
|
||
|
const int outHeight = 1024;
|
||
|
const int outWidth = 2048;
|
||
|
cv::Mat maskImg(outHeight, outWidth, CV_8UC3);
|
||
|
const int* const classes = detected_classes.ptr<int>();
|
||
|
for (int rowId = 0; rowId < outHeight; ++rowId) {
|
||
|
for (int colId = 0; colId < outWidth; ++colId) {
|
||
|
size_t classId = static_cast<size_t>(classes[rowId * outWidth + colId]);
|
||
|
maskImg.at<cv::Vec3b>(rowId, colId) =
|
||
|
classId < colors.size()
|
||
|
? colors[classId]
|
||
|
: cv::Vec3b{0, 0, 0}; // sample detects 20 classes
|
||
|
}
|
||
|
}
|
||
|
cv::resize(maskImg, out, in.size());
|
||
|
const float blending = 0.3f;
|
||
|
out = in * blending + out * (1 - blending);
|
||
|
}
|
||
|
};
|
||
|
} // namespace custom
|
||
|
|
||
|
int main(int argc, char *argv[]) {
|
||
|
cv::CommandLineParser cmd(argc, argv, keys);
|
||
|
if (cmd.has("help")) {
|
||
|
cmd.printMessage();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// Prepare parameters first
|
||
|
const std::string input = cmd.get<std::string>("input");
|
||
|
const std::string output = cmd.get<std::string>("output");
|
||
|
const auto model_path = cmd.get<std::string>("ssm");
|
||
|
const auto weights_path = get_weights_path(model_path);
|
||
|
const auto device = "CPU";
|
||
|
G_API_NET(SemSegmNet, <cv::GMat(cv::GMat)>, "semantic-segmentation");
|
||
|
const auto net = cv::gapi::ie::Params<SemSegmNet> {
|
||
|
model_path, weights_path, device
|
||
|
};
|
||
|
const auto kernels = cv::gapi::kernels<custom::OCVPostProcessing>();
|
||
|
const auto networks = cv::gapi::networks(net);
|
||
|
|
||
|
// Now build the graph
|
||
|
cv::GMat in;
|
||
|
cv::GMat detected_classes = cv::gapi::infer<SemSegmNet>(in);
|
||
|
cv::GMat out = custom::PostProcessing::on(in, detected_classes);
|
||
|
|
||
|
cv::GStreamingCompiled pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out))
|
||
|
.compileStreaming(cv::compile_args(kernels, networks));
|
||
|
auto inputs = cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));
|
||
|
|
||
|
// The execution part
|
||
|
pipeline.setSource(std::move(inputs));
|
||
|
pipeline.start();
|
||
|
|
||
|
cv::VideoWriter writer;
|
||
|
cv::Mat outMat;
|
||
|
while (pipeline.pull(cv::gout(outMat))) {
|
||
|
cv::imshow("Out", outMat);
|
||
|
cv::waitKey(1);
|
||
|
if (!output.empty()) {
|
||
|
if (!writer.isOpened()) {
|
||
|
const auto sz = cv::Size{outMat.cols, outMat.rows};
|
||
|
writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
|
||
|
CV_Assert(writer.isOpened());
|
||
|
}
|
||
|
writer << outMat;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|