|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
#include "opencv2/opencv_modules.hpp"
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCV_XFEATURES2D
|
|
|
|
|
|
|
|
#include <opencv2/features2d.hpp>
|
|
|
|
#include <opencv2/xfeatures2d.hpp>
|
|
|
|
#include <opencv2/imgcodecs.hpp>
|
|
|
|
#include <opencv2/opencv.hpp>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
// If you find this code useful, please add a reference to the following paper in your work:
|
|
|
|
// Gil Levi and Tal Hassner, "LATCH: Learned Arrangements of Three Patch Codes", arXiv preprint arXiv:1501.03719, 15 Jan. 2015
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace cv;
|
|
|
|
|
|
|
|
const float inlier_threshold = 2.5f; // Distance threshold to identify inliers
|
|
|
|
const float nn_match_ratio = 0.8f; // Nearest neighbor matching ratio
|
|
|
|
|
|
|
|
int main(int argc, char* argv[])
|
|
|
|
{
|
|
|
|
CommandLineParser parser(argc, argv,
|
|
|
|
"{@img1 | ../data/graf1.png | input image 1}"
|
|
|
|
"{@img2 | ../data/graf3.png | input image 2}"
|
|
|
|
"{@homography | ../data/H1to3p.xml | homography matrix}");
|
|
|
|
Mat img1 = imread(parser.get<String>("@img1"), IMREAD_GRAYSCALE);
|
|
|
|
Mat img2 = imread(parser.get<String>("@img2"), IMREAD_GRAYSCALE);
|
|
|
|
|
|
|
|
Mat homography;
|
|
|
|
FileStorage fs(parser.get<String>("@homography"), FileStorage::READ);
|
|
|
|
fs.getFirstTopLevelNode() >> homography;
|
|
|
|
|
|
|
|
vector<KeyPoint> kpts1, kpts2;
|
|
|
|
Mat desc1, desc2;
|
|
|
|
|
|
|
|
Ptr<cv::ORB> orb_detector = cv::ORB::create(10000);
|
|
|
|
|
|
|
|
Ptr<xfeatures2d::LATCH> latch = xfeatures2d::LATCH::create();
|
|
|
|
|
|
|
|
|
|
|
|
orb_detector->detect(img1, kpts1);
|
|
|
|
latch->compute(img1, kpts1, desc1);
|
|
|
|
|
|
|
|
orb_detector->detect(img2, kpts2);
|
|
|
|
latch->compute(img2, kpts2, desc2);
|
|
|
|
|
|
|
|
BFMatcher matcher(NORM_HAMMING);
|
|
|
|
vector< vector<DMatch> > nn_matches;
|
|
|
|
matcher.knnMatch(desc1, desc2, nn_matches, 2);
|
|
|
|
|
|
|
|
vector<KeyPoint> matched1, matched2, inliers1, inliers2;
|
|
|
|
vector<DMatch> good_matches;
|
|
|
|
for (size_t i = 0; i < nn_matches.size(); i++) {
|
|
|
|
DMatch first = nn_matches[i][0];
|
|
|
|
float dist1 = nn_matches[i][0].distance;
|
|
|
|
float dist2 = nn_matches[i][1].distance;
|
|
|
|
|
|
|
|
if (dist1 < nn_match_ratio * dist2) {
|
|
|
|
matched1.push_back(kpts1[first.queryIdx]);
|
|
|
|
matched2.push_back(kpts2[first.trainIdx]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (unsigned i = 0; i < matched1.size(); i++) {
|
|
|
|
Mat col = Mat::ones(3, 1, CV_64F);
|
|
|
|
col.at<double>(0) = matched1[i].pt.x;
|
|
|
|
col.at<double>(1) = matched1[i].pt.y;
|
|
|
|
|
|
|
|
col = homography * col;
|
|
|
|
col /= col.at<double>(2);
|
|
|
|
double dist = sqrt(pow(col.at<double>(0) - matched2[i].pt.x, 2) +
|
|
|
|
pow(col.at<double>(1) - matched2[i].pt.y, 2));
|
|
|
|
|
|
|
|
if (dist < inlier_threshold) {
|
|
|
|
int new_i = static_cast<int>(inliers1.size());
|
|
|
|
inliers1.push_back(matched1[i]);
|
|
|
|
inliers2.push_back(matched2[i]);
|
|
|
|
good_matches.push_back(DMatch(new_i, new_i, 0));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat res;
|
|
|
|
drawMatches(img1, inliers1, img2, inliers2, good_matches, res);
|
|
|
|
imwrite("latch_result.png", res);
|
|
|
|
|
|
|
|
|
|
|
|
double inlier_ratio = inliers1.size() * 1.0 / matched1.size();
|
|
|
|
cout << "LATCH Matching Results" << endl;
|
|
|
|
cout << "*******************************" << endl;
|
|
|
|
cout << "# Keypoints 1: \t" << kpts1.size() << endl;
|
|
|
|
cout << "# Keypoints 2: \t" << kpts2.size() << endl;
|
|
|
|
cout << "# Matches: \t" << matched1.size() << endl;
|
|
|
|
cout << "# Inliers: \t" << inliers1.size() << endl;
|
|
|
|
cout << "# Inliers Ratio: \t" << inlier_ratio << endl;
|
|
|
|
cout << endl;
|
|
|
|
|
|
|
|
imshow("result", res);
|
|
|
|
waitKey();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
int main()
|
|
|
|
{
|
|
|
|
std::cerr << "OpenCV was built without xfeatures2d module" << std::endl;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|