mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
201 lines
6.1 KiB
201 lines
6.1 KiB
14 years ago
|
\ifCpp
|
||
|
\section{Object Categorization}
|
||
|
Some approaches based on local 2D features and used to object categorization
|
||
|
are described in this section.
|
||
|
|
||
|
\cvclass{BOWTrainer}
|
||
|
Abstract base class for training ''bag of visual words'' vocabulary from a set of descriptors.
|
||
|
See e.g. ''Visual Categorization with Bags of Keypoints'' of Gabriella Csurka, Christopher R. Dance,
|
||
|
Lixin Fan, Jutta Willamowski, Cedric Bray, 2004.
|
||
|
|
||
|
\begin{lstlisting}
|
||
|
class BOWTrainer
|
||
|
{
|
||
|
public:
|
||
|
BOWTrainer(){}
|
||
|
virtual ~BOWTrainer(){}
|
||
|
|
||
|
void add( const Mat& descriptors );
|
||
|
const vector<Mat>& getDescriptors() const;
|
||
|
int descripotorsCount() const;
|
||
|
|
||
|
virtual void clear();
|
||
|
|
||
|
virtual Mat cluster() const = 0;
|
||
|
virtual Mat cluster( const Mat& descriptors ) const = 0;
|
||
|
|
||
|
protected:
|
||
|
...
|
||
|
};
|
||
|
\end{lstlisting}
|
||
|
|
||
|
\cvCppFunc{BOWTrainer::add}
|
||
|
Add descriptors to training set. The training set will be clustered using \texttt{cluster}
|
||
|
method to construct vocabulary.
|
||
|
|
||
|
\cvdefCpp{
|
||
|
void BOWTrainer::add( const Mat\& descriptors );
|
||
|
}
|
||
|
|
||
|
\begin{description}
|
||
|
\cvarg{descriptors}{Descriptors to add to training set. Each row of \texttt{descriptors}
|
||
|
matrix is a one descriptor.}
|
||
|
\end{description}
|
||
|
|
||
|
\cvCppFunc{BOWTrainer::getDescriptors}
|
||
|
Returns training set of descriptors.
|
||
|
|
||
|
\cvdefCpp{
|
||
|
const vector<Mat>\& BOWTrainer::getDescriptors() const;
|
||
|
}
|
||
|
|
||
|
\cvCppFunc{BOWTrainer::descripotorsCount}
|
||
|
Returns count of all descriptors stored in the training set.
|
||
|
|
||
|
\cvdefCpp{
|
||
|
const vector<Mat>\& BOWTrainer::descripotorsCount() const;
|
||
|
}
|
||
|
|
||
|
\cvCppFunc{BOWTrainer::cluster}
|
||
|
Cluster train descriptors. Vocabulary consists from cluster centers. So this method
|
||
|
returns vocabulary. In first method variant the stored in object train descriptors will be
|
||
|
clustered, in second variant -- input descriptors will be clustered.
|
||
|
|
||
|
\cvdefCpp{
|
||
|
Mat BOWTrainer::cluster() const;
|
||
|
}
|
||
|
|
||
|
\cvdefCpp{
|
||
|
Mat BOWTrainer::cluster( const Mat\& descriptors ) const;
|
||
|
}
|
||
|
|
||
|
\begin{description}
|
||
|
\cvarg{descriptors}{Descriptors to cluster. Each row of \texttt{descriptors}
|
||
|
matrix is a one descriptor. Descriptors will not be added
|
||
|
to the inner train descriptor set.}
|
||
|
\end{description}
|
||
|
|
||
|
\cvclass{BOWKMeansTrainer}
|
||
|
\cvCppCross{kmeans} based class to train visual vocabulary using the ''bag of visual words'' approach.
|
||
|
|
||
|
\begin{lstlisting}
|
||
|
class BOWKMeansTrainer : public BOWTrainer
|
||
|
{
|
||
|
public:
|
||
|
BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(),
|
||
|
int attempts=3, int flags=KMEANS_PP_CENTERS );
|
||
|
virtual ~BOWKMeansTrainer(){}
|
||
|
|
||
|
// Returns trained vocabulary (i.e. cluster centers).
|
||
|
virtual Mat cluster() const;
|
||
|
virtual Mat cluster( const Mat& descriptors ) const;
|
||
|
|
||
|
protected:
|
||
|
...
|
||
|
};
|
||
|
\end{lstlisting}
|
||
|
To gain an understanding of constructor parameters see \cvCppCross{kmeans} function
|
||
|
arguments.
|
||
|
|
||
|
|
||
|
\cvclass{BOWImgDescriptorExtractor}
|
||
|
Class to compute image descriptor using ''bad of visual words''. In few,
|
||
|
such computing consists from the following steps:
|
||
|
1. Compute descriptors for given image and it's keypoints set, \\
|
||
|
2. Find nearest visual words from vocabulary for each keypoint descriptor, \\
|
||
|
3. Image descriptor is a normalized histogram of vocabulary words encountered in the image. I.e.
|
||
|
\texttt{i}-bin of the histogram is a frequency of \texttt{i}-word of vocabulary in the given image.
|
||
|
|
||
|
\begin{lstlisting}
|
||
|
class BOWImgDescriptorExtractor
|
||
|
{
|
||
|
public:
|
||
|
BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor,
|
||
|
const Ptr<DescriptorMatcher>& dmatcher );
|
||
|
virtual ~BOWImgDescriptorExtractor(){}
|
||
|
|
||
|
void setVocabulary( const Mat& vocabulary );
|
||
|
const Mat& getVocabulary() const;
|
||
|
void compute( const Mat& image, vector<KeyPoint>& keypoints,
|
||
|
Mat& imgDescriptor,
|
||
|
vector<vector<int> >* pointIdxsOfClusters=0,
|
||
|
Mat* descriptors=0 );
|
||
|
int descriptorSize() const;
|
||
|
int descriptorType() const;
|
||
|
|
||
|
protected:
|
||
|
...
|
||
|
};
|
||
|
\end{lstlisting}
|
||
|
|
||
|
\cvCppFunc{BOWImgDescriptorExtractor::BOWImgDescriptorExtractor}
|
||
|
Constructor.
|
||
|
|
||
|
\cvdefCpp{
|
||
|
BOWImgDescriptorExtractor::BOWImgDescriptorExtractor(
|
||
|
\par const Ptr<DescriptorExtractor>\& dextractor,
|
||
|
\par const Ptr<DescriptorMatcher>\& dmatcher );
|
||
|
}
|
||
|
|
||
|
\begin{description}
|
||
|
\cvarg{dextractor}{Descriptor extractor that will be used to compute descriptors
|
||
|
for input image and it's keypoints.}
|
||
|
\cvarg{dmatcher}{Descriptor matcher that will be used to find nearest word of trained vocabulary to
|
||
|
each keupoints descriptor of the image.}
|
||
|
\end{description}
|
||
|
|
||
|
\cvCppFunc{BOWImgDescriptorExtractor::setVocabulary}
|
||
|
Method to set visual vocabulary.
|
||
|
|
||
|
\cvdefCpp{
|
||
|
void BOWImgDescriptorExtractor::setVocabulary( const Mat\& vocabulary );
|
||
|
}
|
||
|
|
||
|
\begin{description}
|
||
|
\cvarg{vocabulary}{Vocabulary (can be trained using inheritor of \cvCppCross{BOWTrainer}).
|
||
|
Each row of vocabulary is a one visual word (cluster center).}
|
||
|
\end{description}
|
||
|
|
||
|
\cvCppFunc{BOWImgDescriptorExtractor::getVocabulary}
|
||
|
Returns set vocabulary.
|
||
|
|
||
|
\cvdefCpp{
|
||
|
const Mat\& BOWImgDescriptorExtractor::getVocabulary() const;
|
||
|
}
|
||
|
|
||
|
\cvCppFunc{BOWImgDescriptorExtractor::compute}
|
||
|
Compute image descriptor using set visual vocabulary.
|
||
|
|
||
|
\cvdefCpp{
|
||
|
void BOWImgDescriptorExtractor::compute( const Mat\& image,
|
||
|
\par vector<KeyPoint>\& keypoints, Mat\& imgDescriptor,
|
||
|
\par vector<vector<int> >* pointIdxsOfClusters=0,
|
||
|
\par Mat* descriptors=0 );
|
||
|
}
|
||
|
|
||
|
\begin{description}
|
||
|
\cvarg{image}{The image. Image descriptor will be computed for this.}
|
||
|
\cvarg{keypoints}{Keypoints detected in the input image.}
|
||
|
\cvarg{imgDescriptor}{This is output, i.e. computed image descriptor.}
|
||
|
\cvarg{pointIdxsOfClusters}{Indices of keypoints which belong to the cluster, i.e.
|
||
|
\texttt{pointIdxsOfClusters[i]} is keypoint indices which belong
|
||
|
to the \texttt{i-}cluster (word of vocabulary) (returned if it is not 0.)}
|
||
|
\cvarg{descriptors}{Descriptors of the image keypoints (returned if it is not 0.)}
|
||
|
\end{description}
|
||
|
|
||
|
\cvCppFunc{BOWImgDescriptorExtractor::descriptorSize}
|
||
|
Returns image discriptor size, if vocabulary was set, and 0 otherwise.
|
||
|
|
||
|
\cvdefCpp{
|
||
|
int BOWImgDescriptorExtractor::descriptorSize() const;
|
||
|
}
|
||
|
|
||
|
\cvCppFunc{BOWImgDescriptorExtractor::descriptorType}
|
||
|
Returns image descriptor type.
|
||
|
|
||
|
\cvdefCpp{
|
||
|
int BOWImgDescriptorExtractor::descriptorType() const;
|
||
|
}
|
||
|
|
||
|
\fi
|