|
|
|
#!/usr/bin/python
|
|
|
|
|
|
|
|
'''
|
|
|
|
This example illustrates how to use cv.HoughCircles() function.
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
houghcircles.py [<image_name>]
|
|
|
|
image argument defaults to board.jpg
|
|
|
|
'''
|
|
|
|
|
|
|
|
# Python 2/3 compatibility
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import cv2 as cv
|
|
|
|
|
|
|
|
import sys
|
|
|
|
|
|
|
|
def main():
|
|
|
|
try:
|
|
|
|
fn = sys.argv[1]
|
|
|
|
except IndexError:
|
|
|
|
fn = 'board.jpg'
|
|
|
|
|
|
|
|
src = cv.imread(cv.samples.findFile(fn))
|
|
|
|
img = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
|
|
|
img = cv.medianBlur(img, 5)
|
|
|
|
cimg = src.copy() # numpy function
|
|
|
|
|
|
|
|
circles = cv.HoughCircles(img, cv.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30)
|
|
|
|
|
|
|
|
if circles is not None: # Check if circles have been found and only then iterate over these and add them to the image
|
|
|
|
_a, b, _c = circles.shape
|
|
|
|
for i in range(b):
|
|
|
|
cv.circle(cimg, (circles[0][i][0], circles[0][i][1]), circles[0][i][2], (0, 0, 255), 3, cv.LINE_AA)
|
|
|
|
cv.circle(cimg, (circles[0][i][0], circles[0][i][1]), 2, (0, 255, 0), 3, cv.LINE_AA) # draw center of circle
|
|
|
|
|
|
|
|
cv.imshow("detected circles", cimg)
|
|
|
|
|
|
|
|
cv.imshow("source", src)
|
|
|
|
cv.waitKey(0)
|
|
|
|
print('Done')
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
print(__doc__)
|
|
|
|
main()
|
|
|
|
cv.destroyAllWindows()
|