Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1047 lines
30 KiB

/*
* Copyright (c) 1988-1997 Sam Leffler
* Copyright (c) 1991-1997 Silicon Graphics, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software and
* its documentation for any purpose is hereby granted without fee, provided
* that (i) the above copyright notices and this permission notice appear in
* all copies of the software and related documentation, and (ii) the names of
* Sam Leffler and Silicon Graphics may not be used in any advertising or
* publicity relating to the software without the specific, prior written
* permission of Sam Leffler and Silicon Graphics.
*
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
*
* IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
* ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
* LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THIS SOFTWARE.
*/
/*
* TIFF Library.
*
* Predictor Tag Support (used by multiple codecs).
*/
#include "tif_predict.h"
#include "tiffiop.h"
#define PredictorState(tif) ((TIFFPredictorState *)(tif)->tif_data)
static int horAcc8(TIFF *tif, uint8_t *cp0, tmsize_t cc);
static int horAcc16(TIFF *tif, uint8_t *cp0, tmsize_t cc);
static int horAcc32(TIFF *tif, uint8_t *cp0, tmsize_t cc);
static int horAcc64(TIFF *tif, uint8_t *cp0, tmsize_t cc);
static int swabHorAcc16(TIFF *tif, uint8_t *cp0, tmsize_t cc);
static int swabHorAcc32(TIFF *tif, uint8_t *cp0, tmsize_t cc);
static int swabHorAcc64(TIFF *tif, uint8_t *cp0, tmsize_t cc);
static int horDiff8(TIFF *tif, uint8_t *cp0, tmsize_t cc);
static int horDiff16(TIFF *tif, uint8_t *cp0, tmsize_t cc);
static int horDiff32(TIFF *tif, uint8_t *cp0, tmsize_t cc);
static int horDiff64(TIFF *tif, uint8_t *cp0, tmsize_t cc);
static int swabHorDiff16(TIFF *tif, uint8_t *cp0, tmsize_t cc);
static int swabHorDiff32(TIFF *tif, uint8_t *cp0, tmsize_t cc);
static int swabHorDiff64(TIFF *tif, uint8_t *cp0, tmsize_t cc);
static int fpAcc(TIFF *tif, uint8_t *cp0, tmsize_t cc);
static int fpDiff(TIFF *tif, uint8_t *cp0, tmsize_t cc);
static int PredictorDecodeRow(TIFF *tif, uint8_t *op0, tmsize_t occ0,
uint16_t s);
static int PredictorDecodeTile(TIFF *tif, uint8_t *op0, tmsize_t occ0,
uint16_t s);
static int PredictorEncodeRow(TIFF *tif, uint8_t *bp, tmsize_t cc, uint16_t s);
static int PredictorEncodeTile(TIFF *tif, uint8_t *bp0, tmsize_t cc0,
uint16_t s);
static int PredictorSetup(TIFF *tif)
{
static const char module[] = "PredictorSetup";
TIFFPredictorState *sp = PredictorState(tif);
TIFFDirectory *td = &tif->tif_dir;
switch (sp->predictor) /* no differencing */
{
case PREDICTOR_NONE:
return 1;
case PREDICTOR_HORIZONTAL:
if (td->td_bitspersample != 8 && td->td_bitspersample != 16 &&
td->td_bitspersample != 32 && td->td_bitspersample != 64)
{
TIFFErrorExtR(tif, module,
"Horizontal differencing \"Predictor\" not "
"supported with %" PRIu16 "-bit samples",
td->td_bitspersample);
return 0;
}
break;
case PREDICTOR_FLOATINGPOINT:
if (td->td_sampleformat != SAMPLEFORMAT_IEEEFP)
{
TIFFErrorExtR(
tif, module,
"Floating point \"Predictor\" not supported with %" PRIu16
" data format",
td->td_sampleformat);
return 0;
}
if (td->td_bitspersample != 16 && td->td_bitspersample != 24 &&
td->td_bitspersample != 32 && td->td_bitspersample != 64)
{ /* Should 64 be allowed? */
TIFFErrorExtR(
tif, module,
"Floating point \"Predictor\" not supported with %" PRIu16
"-bit samples",
td->td_bitspersample);
return 0;
}
break;
default:
TIFFErrorExtR(tif, module, "\"Predictor\" value %d not supported",
sp->predictor);
return 0;
}
sp->stride =
(td->td_planarconfig == PLANARCONFIG_CONTIG ? td->td_samplesperpixel
: 1);
/*
* Calculate the scanline/tile-width size in bytes.
*/
if (isTiled(tif))
sp->rowsize = TIFFTileRowSize(tif);
else
sp->rowsize = TIFFScanlineSize(tif);
if (sp->rowsize == 0)
return 0;
return 1;
}
static int PredictorSetupDecode(TIFF *tif)
{
TIFFPredictorState *sp = PredictorState(tif);
TIFFDirectory *td = &tif->tif_dir;
/* Note: when PredictorSetup() fails, the effets of setupdecode() */
/* will not be "canceled" so setupdecode() might be robust to */
/* be called several times. */
if (!(*sp->setupdecode)(tif) || !PredictorSetup(tif))
return 0;
if (sp->predictor == 2)
{
switch (td->td_bitspersample)
{
case 8:
sp->decodepfunc = horAcc8;
break;
case 16:
sp->decodepfunc = horAcc16;
break;
case 32:
sp->decodepfunc = horAcc32;
break;
case 64:
sp->decodepfunc = horAcc64;
break;
}
/*
* Override default decoding method with one that does the
* predictor stuff.
*/
if (tif->tif_decoderow != PredictorDecodeRow)
{
sp->decoderow = tif->tif_decoderow;
tif->tif_decoderow = PredictorDecodeRow;
sp->decodestrip = tif->tif_decodestrip;
tif->tif_decodestrip = PredictorDecodeTile;
sp->decodetile = tif->tif_decodetile;
tif->tif_decodetile = PredictorDecodeTile;
}
/*
* If the data is horizontally differenced 16-bit data that
* requires byte-swapping, then it must be byte swapped before
* the accumulation step. We do this with a special-purpose
* routine and override the normal post decoding logic that
* the library setup when the directory was read.
*/
if (tif->tif_flags & TIFF_SWAB)
{
if (sp->decodepfunc == horAcc16)
{
sp->decodepfunc = swabHorAcc16;
tif->tif_postdecode = _TIFFNoPostDecode;
}
else if (sp->decodepfunc == horAcc32)
{
sp->decodepfunc = swabHorAcc32;
tif->tif_postdecode = _TIFFNoPostDecode;
}
else if (sp->decodepfunc == horAcc64)
{
sp->decodepfunc = swabHorAcc64;
tif->tif_postdecode = _TIFFNoPostDecode;
}
}
}
else if (sp->predictor == 3)
{
sp->decodepfunc = fpAcc;
/*
* Override default decoding method with one that does the
* predictor stuff.
*/
if (tif->tif_decoderow != PredictorDecodeRow)
{
sp->decoderow = tif->tif_decoderow;
tif->tif_decoderow = PredictorDecodeRow;
sp->decodestrip = tif->tif_decodestrip;
tif->tif_decodestrip = PredictorDecodeTile;
sp->decodetile = tif->tif_decodetile;
tif->tif_decodetile = PredictorDecodeTile;
}
/*
* The data should not be swapped outside of the floating
* point predictor, the accumulation routine should return
* byres in the native order.
*/
if (tif->tif_flags & TIFF_SWAB)
{
tif->tif_postdecode = _TIFFNoPostDecode;
}
/*
* Allocate buffer to keep the decoded bytes before
* rearranging in the right order
*/
}
return 1;
}
static int PredictorSetupEncode(TIFF *tif)
{
TIFFPredictorState *sp = PredictorState(tif);
TIFFDirectory *td = &tif->tif_dir;
if (!(*sp->setupencode)(tif) || !PredictorSetup(tif))
return 0;
if (sp->predictor == 2)
{
switch (td->td_bitspersample)
{
case 8:
sp->encodepfunc = horDiff8;
break;
case 16:
sp->encodepfunc = horDiff16;
break;
case 32:
sp->encodepfunc = horDiff32;
break;
case 64:
sp->encodepfunc = horDiff64;
break;
}
/*
* Override default encoding method with one that does the
* predictor stuff.
*/
if (tif->tif_encoderow != PredictorEncodeRow)
{
sp->encoderow = tif->tif_encoderow;
tif->tif_encoderow = PredictorEncodeRow;
sp->encodestrip = tif->tif_encodestrip;
tif->tif_encodestrip = PredictorEncodeTile;
sp->encodetile = tif->tif_encodetile;
tif->tif_encodetile = PredictorEncodeTile;
}
/*
* If the data is horizontally differenced 16-bit data that
* requires byte-swapping, then it must be byte swapped after
* the differentiation step. We do this with a special-purpose
* routine and override the normal post decoding logic that
* the library setup when the directory was read.
*/
if (tif->tif_flags & TIFF_SWAB)
{
if (sp->encodepfunc == horDiff16)
{
sp->encodepfunc = swabHorDiff16;
tif->tif_postdecode = _TIFFNoPostDecode;
}
else if (sp->encodepfunc == horDiff32)
{
sp->encodepfunc = swabHorDiff32;
tif->tif_postdecode = _TIFFNoPostDecode;
}
else if (sp->encodepfunc == horDiff64)
{
sp->encodepfunc = swabHorDiff64;
tif->tif_postdecode = _TIFFNoPostDecode;
}
}
}
else if (sp->predictor == 3)
{
sp->encodepfunc = fpDiff;
/*
* Override default encoding method with one that does the
* predictor stuff.
*/
if (tif->tif_encoderow != PredictorEncodeRow)
{
sp->encoderow = tif->tif_encoderow;
tif->tif_encoderow = PredictorEncodeRow;
sp->encodestrip = tif->tif_encodestrip;
tif->tif_encodestrip = PredictorEncodeTile;
sp->encodetile = tif->tif_encodetile;
tif->tif_encodetile = PredictorEncodeTile;
}
}
return 1;
}
#define REPEAT4(n, op) \
switch (n) \
{ \
default: \
{ \
tmsize_t i; \
for (i = n - 4; i > 0; i--) \
{ \
op; \
} \
} /*-fallthrough*/ \
case 4: \
op; /*-fallthrough*/ \
case 3: \
op; /*-fallthrough*/ \
case 2: \
op; /*-fallthrough*/ \
case 1: \
op; /*-fallthrough*/ \
case 0:; \
}
/* Remarks related to C standard compliance in all below functions : */
/* - to avoid any undefined behavior, we only operate on unsigned types */
/* since the behavior of "overflows" is defined (wrap over) */
/* - when storing into the byte stream, we explicitly mask with 0xff so */
/* as to make icc -check=conversions happy (not necessary by the standard) */
TIFF_NOSANITIZE_UNSIGNED_INT_OVERFLOW
static int horAcc8(TIFF *tif, uint8_t *cp0, tmsize_t cc)
{
tmsize_t stride = PredictorState(tif)->stride;
unsigned char *cp = (unsigned char *)cp0;
if ((cc % stride) != 0)
{
TIFFErrorExtR(tif, "horAcc8", "%s", "(cc%stride)!=0");
return 0;
}
if (cc > stride)
{
/*
* Pipeline the most common cases.
*/
if (stride == 3)
{
unsigned int cr = cp[0];
unsigned int cg = cp[1];
unsigned int cb = cp[2];
tmsize_t i = stride;
for (; i < cc; i += stride)
{
cp[i + 0] = (unsigned char)((cr += cp[i + 0]) & 0xff);
cp[i + 1] = (unsigned char)((cg += cp[i + 1]) & 0xff);
cp[i + 2] = (unsigned char)((cb += cp[i + 2]) & 0xff);
}
}
else if (stride == 4)
{
unsigned int cr = cp[0];
unsigned int cg = cp[1];
unsigned int cb = cp[2];
unsigned int ca = cp[3];
tmsize_t i = stride;
for (; i < cc; i += stride)
{
cp[i + 0] = (unsigned char)((cr += cp[i + 0]) & 0xff);
cp[i + 1] = (unsigned char)((cg += cp[i + 1]) & 0xff);
cp[i + 2] = (unsigned char)((cb += cp[i + 2]) & 0xff);
cp[i + 3] = (unsigned char)((ca += cp[i + 3]) & 0xff);
}
}
else
{
cc -= stride;
do
{
REPEAT4(stride,
cp[stride] = (unsigned char)((cp[stride] + *cp) & 0xff);
cp++)
cc -= stride;
} while (cc > 0);
}
}
return 1;
}
static int swabHorAcc16(TIFF *tif, uint8_t *cp0, tmsize_t cc)
{
uint16_t *wp = (uint16_t *)cp0;
tmsize_t wc = cc / 2;
TIFFSwabArrayOfShort(wp, wc);
return horAcc16(tif, cp0, cc);
}
TIFF_NOSANITIZE_UNSIGNED_INT_OVERFLOW
static int horAcc16(TIFF *tif, uint8_t *cp0, tmsize_t cc)
{
tmsize_t stride = PredictorState(tif)->stride;
uint16_t *wp = (uint16_t *)cp0;
tmsize_t wc = cc / 2;
if ((cc % (2 * stride)) != 0)
{
TIFFErrorExtR(tif, "horAcc16", "%s", "cc%(2*stride))!=0");
return 0;
}
if (wc > stride)
{
wc -= stride;
do
{
REPEAT4(stride, wp[stride] = (uint16_t)(((unsigned int)wp[stride] +
(unsigned int)wp[0]) &
0xffff);
wp++)
wc -= stride;
} while (wc > 0);
}
return 1;
}
static int swabHorAcc32(TIFF *tif, uint8_t *cp0, tmsize_t cc)
{
uint32_t *wp = (uint32_t *)cp0;
tmsize_t wc = cc / 4;
TIFFSwabArrayOfLong(wp, wc);
return horAcc32(tif, cp0, cc);
}
TIFF_NOSANITIZE_UNSIGNED_INT_OVERFLOW
static int horAcc32(TIFF *tif, uint8_t *cp0, tmsize_t cc)
{
tmsize_t stride = PredictorState(tif)->stride;
uint32_t *wp = (uint32_t *)cp0;
tmsize_t wc = cc / 4;
if ((cc % (4 * stride)) != 0)
{
TIFFErrorExtR(tif, "horAcc32", "%s", "cc%(4*stride))!=0");
return 0;
}
if (wc > stride)
{
wc -= stride;
do
{
REPEAT4(stride, wp[stride] += wp[0]; wp++)
wc -= stride;
} while (wc > 0);
}
return 1;
}
static int swabHorAcc64(TIFF *tif, uint8_t *cp0, tmsize_t cc)
{
uint64_t *wp = (uint64_t *)cp0;
tmsize_t wc = cc / 8;
TIFFSwabArrayOfLong8(wp, wc);
return horAcc64(tif, cp0, cc);
}
TIFF_NOSANITIZE_UNSIGNED_INT_OVERFLOW
static int horAcc64(TIFF *tif, uint8_t *cp0, tmsize_t cc)
{
tmsize_t stride = PredictorState(tif)->stride;
uint64_t *wp = (uint64_t *)cp0;
tmsize_t wc = cc / 8;
if ((cc % (8 * stride)) != 0)
{
TIFFErrorExtR(tif, "horAcc64", "%s", "cc%(8*stride))!=0");
return 0;
}
if (wc > stride)
{
wc -= stride;
do
{
REPEAT4(stride, wp[stride] += wp[0]; wp++)
wc -= stride;
} while (wc > 0);
}
return 1;
}
/*
* Floating point predictor accumulation routine.
*/
static int fpAcc(TIFF *tif, uint8_t *cp0, tmsize_t cc)
{
tmsize_t stride = PredictorState(tif)->stride;
uint32_t bps = tif->tif_dir.td_bitspersample / 8;
tmsize_t wc = cc / bps;
tmsize_t count = cc;
uint8_t *cp = (uint8_t *)cp0;
uint8_t *tmp;
if (cc % (bps * stride) != 0)
{
TIFFErrorExtR(tif, "fpAcc", "%s", "cc%(bps*stride))!=0");
return 0;
}
tmp = (uint8_t *)_TIFFmallocExt(tif, cc);
if (!tmp)
return 0;
while (count > stride)
{
REPEAT4(stride,
cp[stride] = (unsigned char)((cp[stride] + cp[0]) & 0xff);
cp++)
count -= stride;
}
_TIFFmemcpy(tmp, cp0, cc);
cp = (uint8_t *)cp0;
for (count = 0; count < wc; count++)
{
uint32_t byte;
for (byte = 0; byte < bps; byte++)
{
#if WORDS_BIGENDIAN
cp[bps * count + byte] = tmp[byte * wc + count];
#else
cp[bps * count + byte] = tmp[(bps - byte - 1) * wc + count];
#endif
}
}
_TIFFfreeExt(tif, tmp);
return 1;
}
/*
* Decode a scanline and apply the predictor routine.
*/
static int PredictorDecodeRow(TIFF *tif, uint8_t *op0, tmsize_t occ0,
uint16_t s)
{
TIFFPredictorState *sp = PredictorState(tif);
assert(sp != NULL);
assert(sp->decoderow != NULL);
assert(sp->decodepfunc != NULL);
if ((*sp->decoderow)(tif, op0, occ0, s))
{
return (*sp->decodepfunc)(tif, op0, occ0);
}
else
return 0;
}
/*
* Decode a tile/strip and apply the predictor routine.
* Note that horizontal differencing must be done on a
* row-by-row basis. The width of a "row" has already
* been calculated at pre-decode time according to the
* strip/tile dimensions.
*/
static int PredictorDecodeTile(TIFF *tif, uint8_t *op0, tmsize_t occ0,
uint16_t s)
{
TIFFPredictorState *sp = PredictorState(tif);
assert(sp != NULL);
assert(sp->decodetile != NULL);
if ((*sp->decodetile)(tif, op0, occ0, s))
{
tmsize_t rowsize = sp->rowsize;
assert(rowsize > 0);
if ((occ0 % rowsize) != 0)
{
TIFFErrorExtR(tif, "PredictorDecodeTile", "%s",
"occ0%rowsize != 0");
return 0;
}
assert(sp->decodepfunc != NULL);
while (occ0 > 0)
{
if (!(*sp->decodepfunc)(tif, op0, rowsize))
return 0;
occ0 -= rowsize;
op0 += rowsize;
}
return 1;
}
else
return 0;
}
TIFF_NOSANITIZE_UNSIGNED_INT_OVERFLOW
static int horDiff8(TIFF *tif, uint8_t *cp0, tmsize_t cc)
{
TIFFPredictorState *sp = PredictorState(tif);
tmsize_t stride = sp->stride;
unsigned char *cp = (unsigned char *)cp0;
if ((cc % stride) != 0)
{
TIFFErrorExtR(tif, "horDiff8", "%s", "(cc%stride)!=0");
return 0;
}
if (cc > stride)
{
cc -= stride;
/*
* Pipeline the most common cases.
*/
if (stride == 3)
{
unsigned int r1, g1, b1;
unsigned int r2 = cp[0];
unsigned int g2 = cp[1];
unsigned int b2 = cp[2];
do
{
r1 = cp[3];
cp[3] = (unsigned char)((r1 - r2) & 0xff);
r2 = r1;
g1 = cp[4];
cp[4] = (unsigned char)((g1 - g2) & 0xff);
g2 = g1;
b1 = cp[5];
cp[5] = (unsigned char)((b1 - b2) & 0xff);
b2 = b1;
cp += 3;
} while ((cc -= 3) > 0);
}
else if (stride == 4)
{
unsigned int r1, g1, b1, a1;
unsigned int r2 = cp[0];
unsigned int g2 = cp[1];
unsigned int b2 = cp[2];
unsigned int a2 = cp[3];
do
{
r1 = cp[4];
cp[4] = (unsigned char)((r1 - r2) & 0xff);
r2 = r1;
g1 = cp[5];
cp[5] = (unsigned char)((g1 - g2) & 0xff);
g2 = g1;
b1 = cp[6];
cp[6] = (unsigned char)((b1 - b2) & 0xff);
b2 = b1;
a1 = cp[7];
cp[7] = (unsigned char)((a1 - a2) & 0xff);
a2 = a1;
cp += 4;
} while ((cc -= 4) > 0);
}
else
{
cp += cc - 1;
do
{
REPEAT4(stride,
cp[stride] =
(unsigned char)((cp[stride] - cp[0]) & 0xff);
cp--)
} while ((cc -= stride) > 0);
}
}
return 1;
}
TIFF_NOSANITIZE_UNSIGNED_INT_OVERFLOW
static int horDiff16(TIFF *tif, uint8_t *cp0, tmsize_t cc)
{
TIFFPredictorState *sp = PredictorState(tif);
tmsize_t stride = sp->stride;
uint16_t *wp = (uint16_t *)cp0;
tmsize_t wc = cc / 2;
if ((cc % (2 * stride)) != 0)
{
TIFFErrorExtR(tif, "horDiff8", "%s", "(cc%(2*stride))!=0");
return 0;
}
if (wc > stride)
{
wc -= stride;
wp += wc - 1;
do
{
REPEAT4(stride, wp[stride] = (uint16_t)(((unsigned int)wp[stride] -
(unsigned int)wp[0]) &
0xffff);
wp--)
wc -= stride;
} while (wc > 0);
}
return 1;
}
static int swabHorDiff16(TIFF *tif, uint8_t *cp0, tmsize_t cc)
{
uint16_t *wp = (uint16_t *)cp0;
tmsize_t wc = cc / 2;
if (!horDiff16(tif, cp0, cc))
return 0;
TIFFSwabArrayOfShort(wp, wc);
return 1;
}
TIFF_NOSANITIZE_UNSIGNED_INT_OVERFLOW
static int horDiff32(TIFF *tif, uint8_t *cp0, tmsize_t cc)
{
TIFFPredictorState *sp = PredictorState(tif);
tmsize_t stride = sp->stride;
uint32_t *wp = (uint32_t *)cp0;
tmsize_t wc = cc / 4;
if ((cc % (4 * stride)) != 0)
{
TIFFErrorExtR(tif, "horDiff32", "%s", "(cc%(4*stride))!=0");
return 0;
}
if (wc > stride)
{
wc -= stride;
wp += wc - 1;
do
{
REPEAT4(stride, wp[stride] -= wp[0]; wp--)
wc -= stride;
} while (wc > 0);
}
return 1;
}
static int swabHorDiff32(TIFF *tif, uint8_t *cp0, tmsize_t cc)
{
uint32_t *wp = (uint32_t *)cp0;
tmsize_t wc = cc / 4;
if (!horDiff32(tif, cp0, cc))
return 0;
TIFFSwabArrayOfLong(wp, wc);
return 1;
}
TIFF_NOSANITIZE_UNSIGNED_INT_OVERFLOW
static int horDiff64(TIFF *tif, uint8_t *cp0, tmsize_t cc)
{
TIFFPredictorState *sp = PredictorState(tif);
tmsize_t stride = sp->stride;
uint64_t *wp = (uint64_t *)cp0;
tmsize_t wc = cc / 8;
if ((cc % (8 * stride)) != 0)
{
TIFFErrorExtR(tif, "horDiff64", "%s", "(cc%(8*stride))!=0");
return 0;
}
if (wc > stride)
{
wc -= stride;
wp += wc - 1;
do
{
REPEAT4(stride, wp[stride] -= wp[0]; wp--)
wc -= stride;
} while (wc > 0);
}
return 1;
}
static int swabHorDiff64(TIFF *tif, uint8_t *cp0, tmsize_t cc)
{
uint64_t *wp = (uint64_t *)cp0;
tmsize_t wc = cc / 8;
if (!horDiff64(tif, cp0, cc))
return 0;
TIFFSwabArrayOfLong8(wp, wc);
return 1;
}
/*
* Floating point predictor differencing routine.
*/
TIFF_NOSANITIZE_UNSIGNED_INT_OVERFLOW
static int fpDiff(TIFF *tif, uint8_t *cp0, tmsize_t cc)
{
tmsize_t stride = PredictorState(tif)->stride;
uint32_t bps = tif->tif_dir.td_bitspersample / 8;
tmsize_t wc = cc / bps;
tmsize_t count;
uint8_t *cp = (uint8_t *)cp0;
uint8_t *tmp;
if ((cc % (bps * stride)) != 0)
{
TIFFErrorExtR(tif, "fpDiff", "%s", "(cc%(bps*stride))!=0");
return 0;
}
tmp = (uint8_t *)_TIFFmallocExt(tif, cc);
if (!tmp)
return 0;
_TIFFmemcpy(tmp, cp0, cc);
for (count = 0; count < wc; count++)
{
uint32_t byte;
for (byte = 0; byte < bps; byte++)
{
#if WORDS_BIGENDIAN
cp[byte * wc + count] = tmp[bps * count + byte];
#else
cp[(bps - byte - 1) * wc + count] = tmp[bps * count + byte];
#endif
}
}
_TIFFfreeExt(tif, tmp);
cp = (uint8_t *)cp0;
cp += cc - stride - 1;
for (count = cc; count > stride; count -= stride)
REPEAT4(stride,
cp[stride] = (unsigned char)((cp[stride] - cp[0]) & 0xff);
cp--)
return 1;
}
static int PredictorEncodeRow(TIFF *tif, uint8_t *bp, tmsize_t cc, uint16_t s)
{
TIFFPredictorState *sp = PredictorState(tif);
assert(sp != NULL);
assert(sp->encodepfunc != NULL);
assert(sp->encoderow != NULL);
/* XXX horizontal differencing alters user's data XXX */
if (!(*sp->encodepfunc)(tif, bp, cc))
return 0;
return (*sp->encoderow)(tif, bp, cc, s);
}
static int PredictorEncodeTile(TIFF *tif, uint8_t *bp0, tmsize_t cc0,
uint16_t s)
{
static const char module[] = "PredictorEncodeTile";
TIFFPredictorState *sp = PredictorState(tif);
uint8_t *working_copy;
tmsize_t cc = cc0, rowsize;
unsigned char *bp;
int result_code;
assert(sp != NULL);
assert(sp->encodepfunc != NULL);
assert(sp->encodetile != NULL);
/*
* Do predictor manipulation in a working buffer to avoid altering
* the callers buffer. http://trac.osgeo.org/gdal/ticket/1965
*/
working_copy = (uint8_t *)_TIFFmallocExt(tif, cc0);
if (working_copy == NULL)
{
TIFFErrorExtR(tif, module,
"Out of memory allocating %" PRId64 " byte temp buffer.",
(int64_t)cc0);
return 0;
}
memcpy(working_copy, bp0, cc0);
bp = working_copy;
rowsize = sp->rowsize;
assert(rowsize > 0);
if ((cc0 % rowsize) != 0)
{
TIFFErrorExtR(tif, "PredictorEncodeTile", "%s", "(cc0%rowsize)!=0");
_TIFFfreeExt(tif, working_copy);
return 0;
}
while (cc > 0)
{
(*sp->encodepfunc)(tif, bp, rowsize);
cc -= rowsize;
bp += rowsize;
}
result_code = (*sp->encodetile)(tif, working_copy, cc0, s);
_TIFFfreeExt(tif, working_copy);
return result_code;
}
#define FIELD_PREDICTOR (FIELD_CODEC + 0) /* XXX */
static const TIFFField predictFields[] = {
{TIFFTAG_PREDICTOR, 1, 1, TIFF_SHORT, 0, TIFF_SETGET_UINT16,
TIFF_SETGET_UINT16, FIELD_PREDICTOR, FALSE, FALSE, "Predictor", NULL},
};
static int PredictorVSetField(TIFF *tif, uint32_t tag, va_list ap)
{
TIFFPredictorState *sp = PredictorState(tif);
assert(sp != NULL);
assert(sp->vsetparent != NULL);
switch (tag)
{
case TIFFTAG_PREDICTOR:
sp->predictor = (uint16_t)va_arg(ap, uint16_vap);
TIFFSetFieldBit(tif, FIELD_PREDICTOR);
break;
default:
return (*sp->vsetparent)(tif, tag, ap);
}
tif->tif_flags |= TIFF_DIRTYDIRECT;
return 1;
}
static int PredictorVGetField(TIFF *tif, uint32_t tag, va_list ap)
{
TIFFPredictorState *sp = PredictorState(tif);
assert(sp != NULL);
assert(sp->vgetparent != NULL);
switch (tag)
{
case TIFFTAG_PREDICTOR:
*va_arg(ap, uint16_t *) = (uint16_t)sp->predictor;
break;
default:
return (*sp->vgetparent)(tif, tag, ap);
}
return 1;
}
static void PredictorPrintDir(TIFF *tif, FILE *fd, long flags)
{
TIFFPredictorState *sp = PredictorState(tif);
(void)flags;
if (TIFFFieldSet(tif, FIELD_PREDICTOR))
{
fprintf(fd, " Predictor: ");
switch (sp->predictor)
{
case 1:
fprintf(fd, "none ");
break;
case 2:
fprintf(fd, "horizontal differencing ");
break;
case 3:
fprintf(fd, "floating point predictor ");
break;
}
fprintf(fd, "%d (0x%x)\n", sp->predictor, sp->predictor);
}
if (sp->printdir)
(*sp->printdir)(tif, fd, flags);
}
int TIFFPredictorInit(TIFF *tif)
{
TIFFPredictorState *sp = PredictorState(tif);
assert(sp != 0);
/*
* Merge codec-specific tag information.
*/
if (!_TIFFMergeFields(tif, predictFields, TIFFArrayCount(predictFields)))
{
TIFFErrorExtR(tif, "TIFFPredictorInit",
"Merging Predictor codec-specific tags failed");
return 0;
}
/*
* Override parent get/set field methods.
*/
sp->vgetparent = tif->tif_tagmethods.vgetfield;
tif->tif_tagmethods.vgetfield =
PredictorVGetField; /* hook for predictor tag */
sp->vsetparent = tif->tif_tagmethods.vsetfield;
tif->tif_tagmethods.vsetfield =
PredictorVSetField; /* hook for predictor tag */
sp->printdir = tif->tif_tagmethods.printdir;
tif->tif_tagmethods.printdir =
PredictorPrintDir; /* hook for predictor tag */
sp->setupdecode = tif->tif_setupdecode;
tif->tif_setupdecode = PredictorSetupDecode;
sp->setupencode = tif->tif_setupencode;
tif->tif_setupencode = PredictorSetupEncode;
sp->predictor = 1; /* default value */
sp->encodepfunc = NULL; /* no predictor routine */
sp->decodepfunc = NULL; /* no predictor routine */
return 1;
}
int TIFFPredictorCleanup(TIFF *tif)
{
TIFFPredictorState *sp = PredictorState(tif);
assert(sp != 0);
tif->tif_tagmethods.vgetfield = sp->vgetparent;
tif->tif_tagmethods.vsetfield = sp->vsetparent;
tif->tif_tagmethods.printdir = sp->printdir;
tif->tif_setupdecode = sp->setupdecode;
tif->tif_setupencode = sp->setupencode;
return 1;
}