Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1671 lines
54 KiB

/*
* Copyright (c) 1996-1997 Sam Leffler
* Copyright (c) 1996 Pixar
*
* Permission to use, copy, modify, distribute, and sell this software and
* its documentation for any purpose is hereby granted without fee, provided
* that (i) the above copyright notices and this permission notice appear in
* all copies of the software and related documentation, and (ii) the names of
* Pixar, Sam Leffler and Silicon Graphics may not be used in any advertising or
* publicity relating to the software without the specific, prior written
* permission of Pixar, Sam Leffler and Silicon Graphics.
*
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
*
* IN NO EVENT SHALL PIXAR, SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
* ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
* LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THIS SOFTWARE.
*/
#include "tiffiop.h"
#ifdef PIXARLOG_SUPPORT
/*
* TIFF Library.
* PixarLog Compression Support
*
* Contributed by Dan McCoy.
*
* PixarLog film support uses the TIFF library to store companded
* 11 bit values into a tiff file, which are compressed using the
* zip compressor.
*
* The codec can take as input and produce as output 32-bit IEEE float values
* as well as 16-bit or 8-bit unsigned integer values.
*
* On writing any of the above are converted into the internal
* 11-bit log format. In the case of 8 and 16 bit values, the
* input is assumed to be unsigned linear color values that represent
* the range 0-1. In the case of IEEE values, the 0-1 range is assumed to
* be the normal linear color range, in addition over 1 values are
* accepted up to a value of about 25.0 to encode "hot" highlights and such.
* The encoding is lossless for 8-bit values, slightly lossy for the
* other bit depths. The actual color precision should be better
* than the human eye can perceive with extra room to allow for
* error introduced by further image computation. As with any quantized
* color format, it is possible to perform image calculations which
* expose the quantization error. This format should certainly be less
* susceptible to such errors than standard 8-bit encodings, but more
* susceptible than straight 16-bit or 32-bit encodings.
*
* On reading the internal format is converted to the desired output format.
* The program can request which format it desires by setting the internal
* pseudo tag TIFFTAG_PIXARLOGDATAFMT to one of these possible values:
* PIXARLOGDATAFMT_FLOAT = provide IEEE float values.
* PIXARLOGDATAFMT_16BIT = provide unsigned 16-bit integer values
* PIXARLOGDATAFMT_8BIT = provide unsigned 8-bit integer values
*
* alternately PIXARLOGDATAFMT_8BITABGR provides unsigned 8-bit integer
* values with the difference that if there are exactly three or four channels
* (rgb or rgba) it swaps the channel order (bgr or abgr).
*
* PIXARLOGDATAFMT_11BITLOG provides the internal encoding directly
* packed in 16-bit values. However no tools are supplied for interpreting
* these values.
*
* "hot" (over 1.0) areas written in floating point get clamped to
* 1.0 in the integer data types.
*
* When the file is closed after writing, the bit depth and sample format
* are set always to appear as if 8-bit data has been written into it.
* That way a naive program unaware of the particulars of the encoding
* gets the format it is most likely able to handle.
*
* The codec does it's own horizontal differencing step on the coded
* values so the libraries predictor stuff should be turned off.
* The codec also handle byte swapping the encoded values as necessary
* since the library does not have the information necessary
* to know the bit depth of the raw unencoded buffer.
*
* NOTE: This decoder does not appear to update tif_rawcp, and tif_rawcc.
* This can cause problems with the implementation of CHUNKY_STRIP_READ_SUPPORT
* as noted in http://trac.osgeo.org/gdal/ticket/3894. FrankW - Jan'11
*/
#include "tif_predict.h"
#include "zlib.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
/* Tables for converting to/from 11 bit coded values */
#define TSIZE 2048 /* decode table size (11-bit tokens) */
#define TSIZEP1 2049 /* Plus one for slop */
#define ONE 1250 /* token value of 1.0 exactly */
#define RATIO 1.004 /* nominal ratio for log part */
#define CODE_MASK 0x7ff /* 11 bits. */
static float Fltsize;
static float LogK1, LogK2;
#define REPEAT(n, op) \
{ \
int i; \
i = n; \
do \
{ \
i--; \
op; \
} while (i > 0); \
}
static void horizontalAccumulateF(uint16_t *wp, int n, int stride, float *op,
float *ToLinearF)
{
register unsigned int cr, cg, cb, ca, mask;
register float t0, t1, t2, t3;
if (n >= stride)
{
mask = CODE_MASK;
if (stride == 3)
{
t0 = ToLinearF[cr = (wp[0] & mask)];
t1 = ToLinearF[cg = (wp[1] & mask)];
t2 = ToLinearF[cb = (wp[2] & mask)];
op[0] = t0;
op[1] = t1;
op[2] = t2;
n -= 3;
while (n > 0)
{
wp += 3;
op += 3;
n -= 3;
t0 = ToLinearF[(cr += wp[0]) & mask];
t1 = ToLinearF[(cg += wp[1]) & mask];
t2 = ToLinearF[(cb += wp[2]) & mask];
op[0] = t0;
op[1] = t1;
op[2] = t2;
}
}
else if (stride == 4)
{
t0 = ToLinearF[cr = (wp[0] & mask)];
t1 = ToLinearF[cg = (wp[1] & mask)];
t2 = ToLinearF[cb = (wp[2] & mask)];
t3 = ToLinearF[ca = (wp[3] & mask)];
op[0] = t0;
op[1] = t1;
op[2] = t2;
op[3] = t3;
n -= 4;
while (n > 0)
{
wp += 4;
op += 4;
n -= 4;
t0 = ToLinearF[(cr += wp[0]) & mask];
t1 = ToLinearF[(cg += wp[1]) & mask];
t2 = ToLinearF[(cb += wp[2]) & mask];
t3 = ToLinearF[(ca += wp[3]) & mask];
op[0] = t0;
op[1] = t1;
op[2] = t2;
op[3] = t3;
}
}
else
{
REPEAT(stride, *op = ToLinearF[*wp & mask]; wp++; op++)
n -= stride;
while (n > 0)
{
REPEAT(stride, wp[stride] += *wp; *op = ToLinearF[*wp & mask];
wp++; op++)
n -= stride;
}
}
}
}
static void horizontalAccumulate12(uint16_t *wp, int n, int stride, int16_t *op,
float *ToLinearF)
{
register unsigned int cr, cg, cb, ca, mask;
register float t0, t1, t2, t3;
#define SCALE12 2048.0F
#define CLAMP12(t) (((t) < 3071) ? (uint16_t)(t) : 3071)
if (n >= stride)
{
mask = CODE_MASK;
if (stride == 3)
{
t0 = ToLinearF[cr = (wp[0] & mask)] * SCALE12;
t1 = ToLinearF[cg = (wp[1] & mask)] * SCALE12;
t2 = ToLinearF[cb = (wp[2] & mask)] * SCALE12;
op[0] = CLAMP12(t0);
op[1] = CLAMP12(t1);
op[2] = CLAMP12(t2);
n -= 3;
while (n > 0)
{
wp += 3;
op += 3;
n -= 3;
t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
op[0] = CLAMP12(t0);
op[1] = CLAMP12(t1);
op[2] = CLAMP12(t2);
}
}
else if (stride == 4)
{
t0 = ToLinearF[cr = (wp[0] & mask)] * SCALE12;
t1 = ToLinearF[cg = (wp[1] & mask)] * SCALE12;
t2 = ToLinearF[cb = (wp[2] & mask)] * SCALE12;
t3 = ToLinearF[ca = (wp[3] & mask)] * SCALE12;
op[0] = CLAMP12(t0);
op[1] = CLAMP12(t1);
op[2] = CLAMP12(t2);
op[3] = CLAMP12(t3);
n -= 4;
while (n > 0)
{
wp += 4;
op += 4;
n -= 4;
t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
t3 = ToLinearF[(ca += wp[3]) & mask] * SCALE12;
op[0] = CLAMP12(t0);
op[1] = CLAMP12(t1);
op[2] = CLAMP12(t2);
op[3] = CLAMP12(t3);
}
}
else
{
REPEAT(stride, t0 = ToLinearF[*wp & mask] * SCALE12;
*op = CLAMP12(t0); wp++; op++)
n -= stride;
while (n > 0)
{
REPEAT(stride, wp[stride] += *wp;
t0 = ToLinearF[wp[stride] & mask] * SCALE12;
*op = CLAMP12(t0); wp++; op++)
n -= stride;
}
}
}
}
static void horizontalAccumulate16(uint16_t *wp, int n, int stride,
uint16_t *op, uint16_t *ToLinear16)
{
register unsigned int cr, cg, cb, ca, mask;
if (n >= stride)
{
mask = CODE_MASK;
if (stride == 3)
{
op[0] = ToLinear16[cr = (wp[0] & mask)];
op[1] = ToLinear16[cg = (wp[1] & mask)];
op[2] = ToLinear16[cb = (wp[2] & mask)];
n -= 3;
while (n > 0)
{
wp += 3;
op += 3;
n -= 3;
op[0] = ToLinear16[(cr += wp[0]) & mask];
op[1] = ToLinear16[(cg += wp[1]) & mask];
op[2] = ToLinear16[(cb += wp[2]) & mask];
}
}
else if (stride == 4)
{
op[0] = ToLinear16[cr = (wp[0] & mask)];
op[1] = ToLinear16[cg = (wp[1] & mask)];
op[2] = ToLinear16[cb = (wp[2] & mask)];
op[3] = ToLinear16[ca = (wp[3] & mask)];
n -= 4;
while (n > 0)
{
wp += 4;
op += 4;
n -= 4;
op[0] = ToLinear16[(cr += wp[0]) & mask];
op[1] = ToLinear16[(cg += wp[1]) & mask];
op[2] = ToLinear16[(cb += wp[2]) & mask];
op[3] = ToLinear16[(ca += wp[3]) & mask];
}
}
else
{
REPEAT(stride, *op = ToLinear16[*wp & mask]; wp++; op++)
n -= stride;
while (n > 0)
{
REPEAT(stride, wp[stride] += *wp; *op = ToLinear16[*wp & mask];
wp++; op++)
n -= stride;
}
}
}
}
/*
* Returns the log encoded 11-bit values with the horizontal
* differencing undone.
*/
static void horizontalAccumulate11(uint16_t *wp, int n, int stride,
uint16_t *op)
{
register unsigned int cr, cg, cb, ca, mask;
if (n >= stride)
{
mask = CODE_MASK;
if (stride == 3)
{
op[0] = wp[0];
op[1] = wp[1];
op[2] = wp[2];
cr = wp[0];
cg = wp[1];
cb = wp[2];
n -= 3;
while (n > 0)
{
wp += 3;
op += 3;
n -= 3;
op[0] = (uint16_t)((cr += wp[0]) & mask);
op[1] = (uint16_t)((cg += wp[1]) & mask);
op[2] = (uint16_t)((cb += wp[2]) & mask);
}
}
else if (stride == 4)
{
op[0] = wp[0];
op[1] = wp[1];
op[2] = wp[2];
op[3] = wp[3];
cr = wp[0];
cg = wp[1];
cb = wp[2];
ca = wp[3];
n -= 4;
while (n > 0)
{
wp += 4;
op += 4;
n -= 4;
op[0] = (uint16_t)((cr += wp[0]) & mask);
op[1] = (uint16_t)((cg += wp[1]) & mask);
op[2] = (uint16_t)((cb += wp[2]) & mask);
op[3] = (uint16_t)((ca += wp[3]) & mask);
}
}
else
{
REPEAT(stride, *op = *wp & mask; wp++; op++)
n -= stride;
while (n > 0)
{
REPEAT(stride, wp[stride] += *wp; *op = *wp & mask; wp++; op++)
n -= stride;
}
}
}
}
static void horizontalAccumulate8(uint16_t *wp, int n, int stride,
unsigned char *op, unsigned char *ToLinear8)
{
register unsigned int cr, cg, cb, ca, mask;
if (n >= stride)
{
mask = CODE_MASK;
if (stride == 3)
{
op[0] = ToLinear8[cr = (wp[0] & mask)];
op[1] = ToLinear8[cg = (wp[1] & mask)];
op[2] = ToLinear8[cb = (wp[2] & mask)];
n -= 3;
while (n > 0)
{
n -= 3;
wp += 3;
op += 3;
op[0] = ToLinear8[(cr += wp[0]) & mask];
op[1] = ToLinear8[(cg += wp[1]) & mask];
op[2] = ToLinear8[(cb += wp[2]) & mask];
}
}
else if (stride == 4)
{
op[0] = ToLinear8[cr = (wp[0] & mask)];
op[1] = ToLinear8[cg = (wp[1] & mask)];
op[2] = ToLinear8[cb = (wp[2] & mask)];
op[3] = ToLinear8[ca = (wp[3] & mask)];
n -= 4;
while (n > 0)
{
n -= 4;
wp += 4;
op += 4;
op[0] = ToLinear8[(cr += wp[0]) & mask];
op[1] = ToLinear8[(cg += wp[1]) & mask];
op[2] = ToLinear8[(cb += wp[2]) & mask];
op[3] = ToLinear8[(ca += wp[3]) & mask];
}
}
else
{
REPEAT(stride, *op = ToLinear8[*wp & mask]; wp++; op++)
n -= stride;
while (n > 0)
{
REPEAT(stride, wp[stride] += *wp; *op = ToLinear8[*wp & mask];
wp++; op++)
n -= stride;
}
}
}
}
static void horizontalAccumulate8abgr(uint16_t *wp, int n, int stride,
unsigned char *op,
unsigned char *ToLinear8)
{
register unsigned int cr, cg, cb, ca, mask;
register unsigned char t0, t1, t2, t3;
if (n >= stride)
{
mask = CODE_MASK;
if (stride == 3)
{
op[0] = 0;
t1 = ToLinear8[cb = (wp[2] & mask)];
t2 = ToLinear8[cg = (wp[1] & mask)];
t3 = ToLinear8[cr = (wp[0] & mask)];
op[1] = t1;
op[2] = t2;
op[3] = t3;
n -= 3;
while (n > 0)
{
n -= 3;
wp += 3;
op += 4;
op[0] = 0;
t1 = ToLinear8[(cb += wp[2]) & mask];
t2 = ToLinear8[(cg += wp[1]) & mask];
t3 = ToLinear8[(cr += wp[0]) & mask];
op[1] = t1;
op[2] = t2;
op[3] = t3;
}
}
else if (stride == 4)
{
t0 = ToLinear8[ca = (wp[3] & mask)];
t1 = ToLinear8[cb = (wp[2] & mask)];
t2 = ToLinear8[cg = (wp[1] & mask)];
t3 = ToLinear8[cr = (wp[0] & mask)];
op[0] = t0;
op[1] = t1;
op[2] = t2;
op[3] = t3;
n -= 4;
while (n > 0)
{
n -= 4;
wp += 4;
op += 4;
t0 = ToLinear8[(ca += wp[3]) & mask];
t1 = ToLinear8[(cb += wp[2]) & mask];
t2 = ToLinear8[(cg += wp[1]) & mask];
t3 = ToLinear8[(cr += wp[0]) & mask];
op[0] = t0;
op[1] = t1;
op[2] = t2;
op[3] = t3;
}
}
else
{
REPEAT(stride, *op = ToLinear8[*wp & mask]; wp++; op++)
n -= stride;
while (n > 0)
{
REPEAT(stride, wp[stride] += *wp; *op = ToLinear8[*wp & mask];
wp++; op++)
n -= stride;
}
}
}
}
/*
* State block for each open TIFF
* file using PixarLog compression/decompression.
*/
typedef struct
{
TIFFPredictorState predict;
z_stream stream;
tmsize_t tbuf_size; /* only set/used on reading for now */
uint16_t *tbuf;
uint16_t stride;
int state;
int user_datafmt;
int quality;
#define PLSTATE_INIT 1
TIFFVSetMethod vgetparent; /* super-class method */
TIFFVSetMethod vsetparent; /* super-class method */
float *ToLinearF;
uint16_t *ToLinear16;
unsigned char *ToLinear8;
uint16_t *FromLT2;
uint16_t *From14; /* Really for 16-bit data, but we shift down 2 */
uint16_t *From8;
} PixarLogState;
static int PixarLogMakeTables(TIFF *tif, PixarLogState *sp)
{
/*
* We make several tables here to convert between various external
* representations (float, 16-bit, and 8-bit) and the internal
* 11-bit companded representation. The 11-bit representation has two
* distinct regions. A linear bottom end up through .018316 in steps
* of about .000073, and a region of constant ratio up to about 25.
* These floating point numbers are stored in the main table ToLinearF.
* All other tables are derived from this one. The tables (and the
* ratios) are continuous at the internal seam.
*/
int nlin, lt2size;
int i, j;
double b, c, linstep, v;
float *ToLinearF;
uint16_t *ToLinear16;
unsigned char *ToLinear8;
uint16_t *FromLT2;
uint16_t *From14; /* Really for 16-bit data, but we shift down 2 */
uint16_t *From8;
c = log(RATIO);
nlin = (int)(1. / c); /* nlin must be an integer */
c = 1. / nlin;
b = exp(-c * ONE); /* multiplicative scale factor [b*exp(c*ONE) = 1] */
linstep = b * c * exp(1.);
LogK1 = (float)(1. / c); /* if (v >= 2) token = k1*log(v*k2) */
LogK2 = (float)(1. / b);
lt2size = (int)(2. / linstep) + 1;
FromLT2 = (uint16_t *)_TIFFmallocExt(tif, lt2size * sizeof(uint16_t));
From14 = (uint16_t *)_TIFFmallocExt(tif, 16384 * sizeof(uint16_t));
From8 = (uint16_t *)_TIFFmallocExt(tif, 256 * sizeof(uint16_t));
ToLinearF = (float *)_TIFFmallocExt(tif, TSIZEP1 * sizeof(float));
ToLinear16 = (uint16_t *)_TIFFmallocExt(tif, TSIZEP1 * sizeof(uint16_t));
ToLinear8 =
(unsigned char *)_TIFFmallocExt(tif, TSIZEP1 * sizeof(unsigned char));
if (FromLT2 == NULL || From14 == NULL || From8 == NULL ||
ToLinearF == NULL || ToLinear16 == NULL || ToLinear8 == NULL)
{
if (FromLT2)
_TIFFfreeExt(tif, FromLT2);
if (From14)
_TIFFfreeExt(tif, From14);
if (From8)
_TIFFfreeExt(tif, From8);
if (ToLinearF)
_TIFFfreeExt(tif, ToLinearF);
if (ToLinear16)
_TIFFfreeExt(tif, ToLinear16);
if (ToLinear8)
_TIFFfreeExt(tif, ToLinear8);
sp->FromLT2 = NULL;
sp->From14 = NULL;
sp->From8 = NULL;
sp->ToLinearF = NULL;
sp->ToLinear16 = NULL;
sp->ToLinear8 = NULL;
return 0;
}
j = 0;
for (i = 0; i < nlin; i++)
{
v = i * linstep;
ToLinearF[j++] = (float)v;
}
for (i = nlin; i < TSIZE; i++)
ToLinearF[j++] = (float)(b * exp(c * i));
ToLinearF[2048] = ToLinearF[2047];
for (i = 0; i < TSIZEP1; i++)
{
v = ToLinearF[i] * 65535.0 + 0.5;
ToLinear16[i] = (v > 65535.0) ? 65535 : (uint16_t)v;
v = ToLinearF[i] * 255.0 + 0.5;
ToLinear8[i] = (v > 255.0) ? 255 : (unsigned char)v;
}
j = 0;
for (i = 0; i < lt2size; i++)
{
if ((i * linstep) * (i * linstep) > ToLinearF[j] * ToLinearF[j + 1])
j++;
FromLT2[i] = (uint16_t)j;
}
/*
* Since we lose info anyway on 16-bit data, we set up a 14-bit
* table and shift 16-bit values down two bits on input.
* saves a little table space.
*/
j = 0;
for (i = 0; i < 16384; i++)
{
while ((i / 16383.) * (i / 16383.) > ToLinearF[j] * ToLinearF[j + 1])
j++;
From14[i] = (uint16_t)j;
}
j = 0;
for (i = 0; i < 256; i++)
{
while ((i / 255.) * (i / 255.) > ToLinearF[j] * ToLinearF[j + 1])
j++;
From8[i] = (uint16_t)j;
}
Fltsize = (float)(lt2size / 2);
sp->ToLinearF = ToLinearF;
sp->ToLinear16 = ToLinear16;
sp->ToLinear8 = ToLinear8;
sp->FromLT2 = FromLT2;
sp->From14 = From14;
sp->From8 = From8;
return 1;
}
#define DecoderState(tif) ((PixarLogState *)(tif)->tif_data)
#define EncoderState(tif) ((PixarLogState *)(tif)->tif_data)
static int PixarLogEncode(TIFF *tif, uint8_t *bp, tmsize_t cc, uint16_t s);
static int PixarLogDecode(TIFF *tif, uint8_t *op, tmsize_t occ, uint16_t s);
#define PIXARLOGDATAFMT_UNKNOWN -1
static int PixarLogGuessDataFmt(TIFFDirectory *td)
{
int guess = PIXARLOGDATAFMT_UNKNOWN;
int format = td->td_sampleformat;
/* If the user didn't tell us his datafmt,
* take our best guess from the bitspersample.
*/
switch (td->td_bitspersample)
{
case 32:
if (format == SAMPLEFORMAT_IEEEFP)
guess = PIXARLOGDATAFMT_FLOAT;
break;
case 16:
if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
guess = PIXARLOGDATAFMT_16BIT;
break;
case 12:
if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_INT)
guess = PIXARLOGDATAFMT_12BITPICIO;
break;
case 11:
if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
guess = PIXARLOGDATAFMT_11BITLOG;
break;
case 8:
if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
guess = PIXARLOGDATAFMT_8BIT;
break;
}
return guess;
}
static tmsize_t multiply_ms(tmsize_t m1, tmsize_t m2)
{
return _TIFFMultiplySSize(NULL, m1, m2, NULL);
}
static tmsize_t add_ms(tmsize_t m1, tmsize_t m2)
{
assert(m1 >= 0 && m2 >= 0);
/* if either input is zero, assume overflow already occurred */
if (m1 == 0 || m2 == 0)
return 0;
else if (m1 > TIFF_TMSIZE_T_MAX - m2)
return 0;
return m1 + m2;
}
static int PixarLogFixupTags(TIFF *tif)
{
(void)tif;
return (1);
}
static int PixarLogSetupDecode(TIFF *tif)
{
static const char module[] = "PixarLogSetupDecode";
TIFFDirectory *td = &tif->tif_dir;
PixarLogState *sp = DecoderState(tif);
tmsize_t tbuf_size;
uint32_t strip_height;
assert(sp != NULL);
/* This function can possibly be called several times by */
/* PredictorSetupDecode() if this function succeeds but */
/* PredictorSetup() fails */
if ((sp->state & PLSTATE_INIT) != 0)
return 1;
strip_height = td->td_rowsperstrip;
if (strip_height > td->td_imagelength)
strip_height = td->td_imagelength;
/* Make sure no byte swapping happens on the data
* after decompression. */
tif->tif_postdecode = _TIFFNoPostDecode;
/* for some reason, we can't do this in TIFFInitPixarLog */
sp->stride =
(td->td_planarconfig == PLANARCONFIG_CONTIG ? td->td_samplesperpixel
: 1);
tbuf_size = multiply_ms(
multiply_ms(multiply_ms(sp->stride, td->td_imagewidth), strip_height),
sizeof(uint16_t));
/* add one more stride in case input ends mid-stride */
tbuf_size = add_ms(tbuf_size, sizeof(uint16_t) * sp->stride);
if (tbuf_size == 0)
return (0); /* TODO: this is an error return without error report
through TIFFErrorExt */
sp->tbuf = (uint16_t *)_TIFFmallocExt(tif, tbuf_size);
if (sp->tbuf == NULL)
return (0);
sp->tbuf_size = tbuf_size;
if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
sp->user_datafmt = PixarLogGuessDataFmt(td);
if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
{
_TIFFfreeExt(tif, sp->tbuf);
sp->tbuf = NULL;
sp->tbuf_size = 0;
TIFFErrorExtR(tif, module,
"PixarLog compression can't handle bits depth/data "
"format combination (depth: %" PRIu16 ")",
td->td_bitspersample);
return (0);
}
if (inflateInit(&sp->stream) != Z_OK)
{
_TIFFfreeExt(tif, sp->tbuf);
sp->tbuf = NULL;
sp->tbuf_size = 0;
TIFFErrorExtR(tif, module, "%s",
sp->stream.msg ? sp->stream.msg : "(null)");
return (0);
}
else
{
sp->state |= PLSTATE_INIT;
return (1);
}
}
/*
* Setup state for decoding a strip.
*/
static int PixarLogPreDecode(TIFF *tif, uint16_t s)
{
static const char module[] = "PixarLogPreDecode";
PixarLogState *sp = DecoderState(tif);
(void)s;
assert(sp != NULL);
sp->stream.next_in = tif->tif_rawdata;
assert(sizeof(sp->stream.avail_in) == 4); /* if this assert gets raised,
we need to simplify this code to reflect a ZLib that is likely updated
to deal with 8byte memory sizes, though this code will respond
appropriately even before we simplify it */
sp->stream.avail_in = (uInt)tif->tif_rawcc;
if ((tmsize_t)sp->stream.avail_in != tif->tif_rawcc)
{
TIFFErrorExtR(tif, module, "ZLib cannot deal with buffers this size");
return (0);
}
return (inflateReset(&sp->stream) == Z_OK);
}
static int PixarLogDecode(TIFF *tif, uint8_t *op, tmsize_t occ, uint16_t s)
{
static const char module[] = "PixarLogDecode";
TIFFDirectory *td = &tif->tif_dir;
PixarLogState *sp = DecoderState(tif);
tmsize_t i;
tmsize_t nsamples;
int llen;
uint16_t *up;
switch (sp->user_datafmt)
{
case PIXARLOGDATAFMT_FLOAT:
nsamples = occ / sizeof(float); /* XXX float == 32 bits */
break;
case PIXARLOGDATAFMT_16BIT:
case PIXARLOGDATAFMT_12BITPICIO:
case PIXARLOGDATAFMT_11BITLOG:
nsamples = occ / sizeof(uint16_t); /* XXX uint16_t == 16 bits */
break;
case PIXARLOGDATAFMT_8BIT:
case PIXARLOGDATAFMT_8BITABGR:
nsamples = occ;
break;
default:
TIFFErrorExtR(tif, module,
"%" PRIu16 " bit input not supported in PixarLog",
td->td_bitspersample);
return 0;
}
llen = sp->stride * td->td_imagewidth;
(void)s;
assert(sp != NULL);
sp->stream.next_in = tif->tif_rawcp;
sp->stream.avail_in = (uInt)tif->tif_rawcc;
sp->stream.next_out = (unsigned char *)sp->tbuf;
assert(sizeof(sp->stream.avail_out) == 4); /* if this assert gets raised,
we need to simplify this code to reflect a ZLib that is likely updated
to deal with 8byte memory sizes, though this code will respond
appropriately even before we simplify it */
sp->stream.avail_out = (uInt)(nsamples * sizeof(uint16_t));
if (sp->stream.avail_out != nsamples * sizeof(uint16_t))
{
TIFFErrorExtR(tif, module, "ZLib cannot deal with buffers this size");
return (0);
}
/* Check that we will not fill more than what was allocated */
if ((tmsize_t)sp->stream.avail_out > sp->tbuf_size)
{
TIFFErrorExtR(tif, module, "sp->stream.avail_out > sp->tbuf_size");
return (0);
}
do
{
int state = inflate(&sp->stream, Z_PARTIAL_FLUSH);
if (state == Z_STREAM_END)
{
break; /* XXX */
}
if (state == Z_DATA_ERROR)
{
TIFFErrorExtR(
tif, module, "Decoding error at scanline %" PRIu32 ", %s",
tif->tif_row, sp->stream.msg ? sp->stream.msg : "(null)");
return (0);
}
if (state != Z_OK)
{
TIFFErrorExtR(tif, module, "ZLib error: %s",
sp->stream.msg ? sp->stream.msg : "(null)");
return (0);
}
} while (sp->stream.avail_out > 0);
/* hopefully, we got all the bytes we needed */
if (sp->stream.avail_out != 0)
{
TIFFErrorExtR(tif, module,
"Not enough data at scanline %" PRIu32
" (short %u bytes)",
tif->tif_row, sp->stream.avail_out);
return (0);
}
tif->tif_rawcp = sp->stream.next_in;
tif->tif_rawcc = sp->stream.avail_in;
up = sp->tbuf;
/* Swap bytes in the data if from a different endian machine. */
if (tif->tif_flags & TIFF_SWAB)
TIFFSwabArrayOfShort(up, nsamples);
/*
* if llen is not an exact multiple of nsamples, the decode operation
* may overflow the output buffer, so truncate it enough to prevent
* that but still salvage as much data as possible.
*/
if (nsamples % llen)
{
TIFFWarningExtR(tif, module,
"stride %d is not a multiple of sample count, "
"%" TIFF_SSIZE_FORMAT ", data truncated.",
llen, nsamples);
nsamples -= nsamples % llen;
}
for (i = 0; i < nsamples; i += llen, up += llen)
{
switch (sp->user_datafmt)
{
case PIXARLOGDATAFMT_FLOAT:
horizontalAccumulateF(up, llen, sp->stride, (float *)op,
sp->ToLinearF);
op += llen * sizeof(float);
break;
case PIXARLOGDATAFMT_16BIT:
horizontalAccumulate16(up, llen, sp->stride, (uint16_t *)op,
sp->ToLinear16);
op += llen * sizeof(uint16_t);
break;
case PIXARLOGDATAFMT_12BITPICIO:
horizontalAccumulate12(up, llen, sp->stride, (int16_t *)op,
sp->ToLinearF);
op += llen * sizeof(int16_t);
break;
case PIXARLOGDATAFMT_11BITLOG:
horizontalAccumulate11(up, llen, sp->stride, (uint16_t *)op);
op += llen * sizeof(uint16_t);
break;
case PIXARLOGDATAFMT_8BIT:
horizontalAccumulate8(up, llen, sp->stride, (unsigned char *)op,
sp->ToLinear8);
op += llen * sizeof(unsigned char);
break;
case PIXARLOGDATAFMT_8BITABGR:
horizontalAccumulate8abgr(up, llen, sp->stride,
(unsigned char *)op, sp->ToLinear8);
op += llen * sizeof(unsigned char);
break;
default:
TIFFErrorExtR(tif, module, "Unsupported bits/sample: %" PRIu16,
td->td_bitspersample);
return (0);
}
}
return (1);
}
static int PixarLogSetupEncode(TIFF *tif)
{
static const char module[] = "PixarLogSetupEncode";
TIFFDirectory *td = &tif->tif_dir;
PixarLogState *sp = EncoderState(tif);
tmsize_t tbuf_size;
assert(sp != NULL);
/* for some reason, we can't do this in TIFFInitPixarLog */
sp->stride =
(td->td_planarconfig == PLANARCONFIG_CONTIG ? td->td_samplesperpixel
: 1);
tbuf_size =
multiply_ms(multiply_ms(multiply_ms(sp->stride, td->td_imagewidth),
td->td_rowsperstrip),
sizeof(uint16_t));
if (tbuf_size == 0)
return (0); /* TODO: this is an error return without error report
through TIFFErrorExt */
sp->tbuf = (uint16_t *)_TIFFmallocExt(tif, tbuf_size);
if (sp->tbuf == NULL)
return (0);
if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
sp->user_datafmt = PixarLogGuessDataFmt(td);
if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
{
TIFFErrorExtR(tif, module,
"PixarLog compression can't handle %" PRIu16
" bit linear encodings",
td->td_bitspersample);
return (0);
}
if (deflateInit(&sp->stream, sp->quality) != Z_OK)
{
TIFFErrorExtR(tif, module, "%s",
sp->stream.msg ? sp->stream.msg : "(null)");
return (0);
}
else
{
sp->state |= PLSTATE_INIT;
return (1);
}
}
/*
* Reset encoding state at the start of a strip.
*/
static int PixarLogPreEncode(TIFF *tif, uint16_t s)
{
static const char module[] = "PixarLogPreEncode";
PixarLogState *sp = EncoderState(tif);
(void)s;
assert(sp != NULL);
sp->stream.next_out = tif->tif_rawdata;
assert(sizeof(sp->stream.avail_out) == 4); /* if this assert gets raised,
we need to simplify this code to reflect a ZLib that is likely updated
to deal with 8byte memory sizes, though this code will respond
appropriately even before we simplify it */
sp->stream.avail_out = (uInt)tif->tif_rawdatasize;
if ((tmsize_t)sp->stream.avail_out != tif->tif_rawdatasize)
{
TIFFErrorExtR(tif, module, "ZLib cannot deal with buffers this size");
return (0);
}
return (deflateReset(&sp->stream) == Z_OK);
}
static void horizontalDifferenceF(float *ip, int n, int stride, uint16_t *wp,
uint16_t *FromLT2)
{
int32_t r1, g1, b1, a1, r2, g2, b2, a2, mask;
float fltsize = Fltsize;
#define CLAMP(v) \
((v < (float)0.) ? 0 \
: (v < (float)2.) ? FromLT2[(int)(v * fltsize)] \
: (v > (float)24.2) ? 2047 \
: LogK1 * log(v * LogK2) + 0.5)
mask = CODE_MASK;
if (n >= stride)
{
if (stride == 3)
{
r2 = wp[0] = (uint16_t)CLAMP(ip[0]);
g2 = wp[1] = (uint16_t)CLAMP(ip[1]);
b2 = wp[2] = (uint16_t)CLAMP(ip[2]);
n -= 3;
while (n > 0)
{
n -= 3;
wp += 3;
ip += 3;
r1 = (int32_t)CLAMP(ip[0]);
wp[0] = (uint16_t)((r1 - r2) & mask);
r2 = r1;
g1 = (int32_t)CLAMP(ip[1]);
wp[1] = (uint16_t)((g1 - g2) & mask);
g2 = g1;
b1 = (int32_t)CLAMP(ip[2]);
wp[2] = (uint16_t)((b1 - b2) & mask);
b2 = b1;
}
}
else if (stride == 4)
{
r2 = wp[0] = (uint16_t)CLAMP(ip[0]);
g2 = wp[1] = (uint16_t)CLAMP(ip[1]);
b2 = wp[2] = (uint16_t)CLAMP(ip[2]);
a2 = wp[3] = (uint16_t)CLAMP(ip[3]);
n -= 4;
while (n > 0)
{
n -= 4;
wp += 4;
ip += 4;
r1 = (int32_t)CLAMP(ip[0]);
wp[0] = (uint16_t)((r1 - r2) & mask);
r2 = r1;
g1 = (int32_t)CLAMP(ip[1]);
wp[1] = (uint16_t)((g1 - g2) & mask);
g2 = g1;
b1 = (int32_t)CLAMP(ip[2]);
wp[2] = (uint16_t)((b1 - b2) & mask);
b2 = b1;
a1 = (int32_t)CLAMP(ip[3]);
wp[3] = (uint16_t)((a1 - a2) & mask);
a2 = a1;
}
}
else
{
REPEAT(stride, wp[0] = (uint16_t)CLAMP(ip[0]); wp++; ip++)
n -= stride;
while (n > 0)
{
REPEAT(stride,
wp[0] = (uint16_t)(((int32_t)CLAMP(ip[0]) -
(int32_t)CLAMP(ip[-stride])) &
mask);
wp++; ip++)
n -= stride;
}
}
}
}
static void horizontalDifference16(unsigned short *ip, int n, int stride,
unsigned short *wp, uint16_t *From14)
{
register int r1, g1, b1, a1, r2, g2, b2, a2, mask;
/* assumption is unsigned pixel values */
#undef CLAMP
#define CLAMP(v) From14[(v) >> 2]
mask = CODE_MASK;
if (n >= stride)
{
if (stride == 3)
{
r2 = wp[0] = CLAMP(ip[0]);
g2 = wp[1] = CLAMP(ip[1]);
b2 = wp[2] = CLAMP(ip[2]);
n -= 3;
while (n > 0)
{
n -= 3;
wp += 3;
ip += 3;
r1 = CLAMP(ip[0]);
wp[0] = (uint16_t)((r1 - r2) & mask);
r2 = r1;
g1 = CLAMP(ip[1]);
wp[1] = (uint16_t)((g1 - g2) & mask);
g2 = g1;
b1 = CLAMP(ip[2]);
wp[2] = (uint16_t)((b1 - b2) & mask);
b2 = b1;
}
}
else if (stride == 4)
{
r2 = wp[0] = CLAMP(ip[0]);
g2 = wp[1] = CLAMP(ip[1]);
b2 = wp[2] = CLAMP(ip[2]);
a2 = wp[3] = CLAMP(ip[3]);
n -= 4;
while (n > 0)
{
n -= 4;
wp += 4;
ip += 4;
r1 = CLAMP(ip[0]);
wp[0] = (uint16_t)((r1 - r2) & mask);
r2 = r1;
g1 = CLAMP(ip[1]);
wp[1] = (uint16_t)((g1 - g2) & mask);
g2 = g1;
b1 = CLAMP(ip[2]);
wp[2] = (uint16_t)((b1 - b2) & mask);
b2 = b1;
a1 = CLAMP(ip[3]);
wp[3] = (uint16_t)((a1 - a2) & mask);
a2 = a1;
}
}
else
{
REPEAT(stride, wp[0] = CLAMP(ip[0]); wp++; ip++)
n -= stride;
while (n > 0)
{
REPEAT(stride,
wp[0] = (uint16_t)((CLAMP(ip[0]) - CLAMP(ip[-stride])) &
mask);
wp++; ip++)
n -= stride;
}
}
}
}
static void horizontalDifference8(unsigned char *ip, int n, int stride,
unsigned short *wp, uint16_t *From8)
{
register int r1, g1, b1, a1, r2, g2, b2, a2, mask;
#undef CLAMP
#define CLAMP(v) (From8[(v)])
mask = CODE_MASK;
if (n >= stride)
{
if (stride == 3)
{
r2 = wp[0] = CLAMP(ip[0]);
g2 = wp[1] = CLAMP(ip[1]);
b2 = wp[2] = CLAMP(ip[2]);
n -= 3;
while (n > 0)
{
n -= 3;
r1 = CLAMP(ip[3]);
wp[3] = (uint16_t)((r1 - r2) & mask);
r2 = r1;
g1 = CLAMP(ip[4]);
wp[4] = (uint16_t)((g1 - g2) & mask);
g2 = g1;
b1 = CLAMP(ip[5]);
wp[5] = (uint16_t)((b1 - b2) & mask);
b2 = b1;
wp += 3;
ip += 3;
}
}
else if (stride == 4)
{
r2 = wp[0] = CLAMP(ip[0]);
g2 = wp[1] = CLAMP(ip[1]);
b2 = wp[2] = CLAMP(ip[2]);
a2 = wp[3] = CLAMP(ip[3]);
n -= 4;
while (n > 0)
{
n -= 4;
r1 = CLAMP(ip[4]);
wp[4] = (uint16_t)((r1 - r2) & mask);
r2 = r1;
g1 = CLAMP(ip[5]);
wp[5] = (uint16_t)((g1 - g2) & mask);
g2 = g1;
b1 = CLAMP(ip[6]);
wp[6] = (uint16_t)((b1 - b2) & mask);
b2 = b1;
a1 = CLAMP(ip[7]);
wp[7] = (uint16_t)((a1 - a2) & mask);
a2 = a1;
wp += 4;
ip += 4;
}
}
else
{
REPEAT(stride, wp[0] = CLAMP(ip[0]); wp++; ip++)
n -= stride;
while (n > 0)
{
REPEAT(stride,
wp[0] = (uint16_t)((CLAMP(ip[0]) - CLAMP(ip[-stride])) &
mask);
wp++; ip++)
n -= stride;
}
}
}
}
/*
* Encode a chunk of pixels.
*/
static int PixarLogEncode(TIFF *tif, uint8_t *bp, tmsize_t cc, uint16_t s)
{
static const char module[] = "PixarLogEncode";
TIFFDirectory *td = &tif->tif_dir;
PixarLogState *sp = EncoderState(tif);
tmsize_t i;
tmsize_t n;
int llen;
unsigned short *up;
(void)s;
switch (sp->user_datafmt)
{
case PIXARLOGDATAFMT_FLOAT:
n = cc / sizeof(float); /* XXX float == 32 bits */
break;
case PIXARLOGDATAFMT_16BIT:
case PIXARLOGDATAFMT_12BITPICIO:
case PIXARLOGDATAFMT_11BITLOG:
n = cc / sizeof(uint16_t); /* XXX uint16_t == 16 bits */
break;
case PIXARLOGDATAFMT_8BIT:
case PIXARLOGDATAFMT_8BITABGR:
n = cc;
break;
default:
TIFFErrorExtR(tif, module,
"%" PRIu16 " bit input not supported in PixarLog",
td->td_bitspersample);
return 0;
}
llen = sp->stride * td->td_imagewidth;
/* Check against the number of elements (of size uint16_t) of sp->tbuf */
if (n > ((tmsize_t)td->td_rowsperstrip * llen))
{
TIFFErrorExtR(tif, module, "Too many input bytes provided");
return 0;
}
for (i = 0, up = sp->tbuf; i < n; i += llen, up += llen)
{
switch (sp->user_datafmt)
{
case PIXARLOGDATAFMT_FLOAT:
horizontalDifferenceF((float *)bp, llen, sp->stride, up,
sp->FromLT2);
bp += llen * sizeof(float);
break;
case PIXARLOGDATAFMT_16BIT:
horizontalDifference16((uint16_t *)bp, llen, sp->stride, up,
sp->From14);
bp += llen * sizeof(uint16_t);
break;
case PIXARLOGDATAFMT_8BIT:
horizontalDifference8((unsigned char *)bp, llen, sp->stride, up,
sp->From8);
bp += llen * sizeof(unsigned char);
break;
default:
TIFFErrorExtR(tif, module,
"%" PRIu16 " bit input not supported in PixarLog",
td->td_bitspersample);
return 0;
}
}
sp->stream.next_in = (unsigned char *)sp->tbuf;
assert(sizeof(sp->stream.avail_in) == 4); /* if this assert gets raised,
we need to simplify this code to reflect a ZLib that is likely updated
to deal with 8byte memory sizes, though this code will respond
appropriately even before we simplify it */
sp->stream.avail_in = (uInt)(n * sizeof(uint16_t));
if ((sp->stream.avail_in / sizeof(uint16_t)) != (uInt)n)
{
TIFFErrorExtR(tif, module, "ZLib cannot deal with buffers this size");
return (0);
}
do
{
if (deflate(&sp->stream, Z_NO_FLUSH) != Z_OK)
{
TIFFErrorExtR(tif, module, "Encoder error: %s",
sp->stream.msg ? sp->stream.msg : "(null)");
return (0);
}
if (sp->stream.avail_out == 0)
{
tif->tif_rawcc = tif->tif_rawdatasize;
if (!TIFFFlushData1(tif))
return 0;
sp->stream.next_out = tif->tif_rawdata;
sp->stream.avail_out =
(uInt)tif
->tif_rawdatasize; /* this is a safe typecast, as check is
made already in PixarLogPreEncode */
}
} while (sp->stream.avail_in > 0);
return (1);
}
/*
* Finish off an encoded strip by flushing the last
* string and tacking on an End Of Information code.
*/
static int PixarLogPostEncode(TIFF *tif)
{
static const char module[] = "PixarLogPostEncode";
PixarLogState *sp = EncoderState(tif);
int state;
sp->stream.avail_in = 0;
do
{
state = deflate(&sp->stream, Z_FINISH);
switch (state)
{
case Z_STREAM_END:
case Z_OK:
if ((tmsize_t)sp->stream.avail_out != tif->tif_rawdatasize)
{
tif->tif_rawcc =
tif->tif_rawdatasize - sp->stream.avail_out;
if (!TIFFFlushData1(tif))
return 0;
sp->stream.next_out = tif->tif_rawdata;
sp->stream.avail_out =
(uInt)tif->tif_rawdatasize; /* this is a safe typecast,
as check is made already
in PixarLogPreEncode */
}
break;
default:
TIFFErrorExtR(tif, module, "ZLib error: %s",
sp->stream.msg ? sp->stream.msg : "(null)");
return (0);
}
} while (state != Z_STREAM_END);
return (1);
}
static void PixarLogClose(TIFF *tif)
{
PixarLogState *sp = (PixarLogState *)tif->tif_data;
TIFFDirectory *td = &tif->tif_dir;
assert(sp != 0);
/* In a really sneaky (and really incorrect, and untruthful, and
* troublesome, and error-prone) maneuver that completely goes against
* the spirit of TIFF, and breaks TIFF, on close, we covertly
* modify both bitspersample and sampleformat in the directory to
* indicate 8-bit linear. This way, the decode "just works" even for
* readers that don't know about PixarLog, or how to set
* the PIXARLOGDATFMT pseudo-tag.
*/
if (sp->state & PLSTATE_INIT)
{
/* We test the state to avoid an issue such as in
* http://bugzilla.maptools.org/show_bug.cgi?id=2604
* What appends in that case is that the bitspersample is 1 and
* a TransferFunction is set. The size of the TransferFunction
* depends on 1<<bitspersample. So if we increase it, an access
* out of the buffer will happen at directory flushing.
* Another option would be to clear those targs.
*/
td->td_bitspersample = 8;
td->td_sampleformat = SAMPLEFORMAT_UINT;
}
}
static void PixarLogCleanup(TIFF *tif)
{
PixarLogState *sp = (PixarLogState *)tif->tif_data;
assert(sp != 0);
(void)TIFFPredictorCleanup(tif);
tif->tif_tagmethods.vgetfield = sp->vgetparent;
tif->tif_tagmethods.vsetfield = sp->vsetparent;
if (sp->FromLT2)
_TIFFfreeExt(tif, sp->FromLT2);
if (sp->From14)
_TIFFfreeExt(tif, sp->From14);
if (sp->From8)
_TIFFfreeExt(tif, sp->From8);
if (sp->ToLinearF)
_TIFFfreeExt(tif, sp->ToLinearF);
if (sp->ToLinear16)
_TIFFfreeExt(tif, sp->ToLinear16);
if (sp->ToLinear8)
_TIFFfreeExt(tif, sp->ToLinear8);
if (sp->state & PLSTATE_INIT)
{
if (tif->tif_mode == O_RDONLY)
inflateEnd(&sp->stream);
else
deflateEnd(&sp->stream);
}
if (sp->tbuf)
_TIFFfreeExt(tif, sp->tbuf);
_TIFFfreeExt(tif, sp);
tif->tif_data = NULL;
_TIFFSetDefaultCompressionState(tif);
}
static int PixarLogVSetField(TIFF *tif, uint32_t tag, va_list ap)
{
static const char module[] = "PixarLogVSetField";
PixarLogState *sp = (PixarLogState *)tif->tif_data;
int result;
switch (tag)
{
case TIFFTAG_PIXARLOGQUALITY:
sp->quality = (int)va_arg(ap, int);
if (tif->tif_mode != O_RDONLY && (sp->state & PLSTATE_INIT))
{
if (deflateParams(&sp->stream, sp->quality,
Z_DEFAULT_STRATEGY) != Z_OK)
{
TIFFErrorExtR(tif, module, "ZLib error: %s",
sp->stream.msg ? sp->stream.msg : "(null)");
return (0);
}
}
return (1);
case TIFFTAG_PIXARLOGDATAFMT:
sp->user_datafmt = (int)va_arg(ap, int);
/* Tweak the TIFF header so that the rest of libtiff knows what
* size of data will be passed between app and library, and
* assume that the app knows what it is doing and is not
* confused by these header manipulations...
*/
switch (sp->user_datafmt)
{
case PIXARLOGDATAFMT_8BIT:
case PIXARLOGDATAFMT_8BITABGR:
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8);
TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
break;
case PIXARLOGDATAFMT_11BITLOG:
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
break;
case PIXARLOGDATAFMT_12BITPICIO:
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
break;
case PIXARLOGDATAFMT_16BIT:
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
break;
case PIXARLOGDATAFMT_FLOAT:
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 32);
TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT,
SAMPLEFORMAT_IEEEFP);
break;
}
/*
* Must recalculate sizes should bits/sample change.
*/
tif->tif_tilesize =
isTiled(tif) ? TIFFTileSize(tif) : (tmsize_t)(-1);
tif->tif_scanlinesize = TIFFScanlineSize(tif);
result = 1; /* NB: pseudo tag */
break;
default:
result = (*sp->vsetparent)(tif, tag, ap);
}
return (result);
}
static int PixarLogVGetField(TIFF *tif, uint32_t tag, va_list ap)
{
PixarLogState *sp = (PixarLogState *)tif->tif_data;
switch (tag)
{
case TIFFTAG_PIXARLOGQUALITY:
*va_arg(ap, int *) = sp->quality;
break;
case TIFFTAG_PIXARLOGDATAFMT:
*va_arg(ap, int *) = sp->user_datafmt;
break;
default:
return (*sp->vgetparent)(tif, tag, ap);
}
return (1);
}
static const TIFFField pixarlogFields[] = {
{TIFFTAG_PIXARLOGDATAFMT, 0, 0, TIFF_ANY, 0, TIFF_SETGET_INT,
TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, FALSE, FALSE, "", NULL},
{TIFFTAG_PIXARLOGQUALITY, 0, 0, TIFF_ANY, 0, TIFF_SETGET_INT,
TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, FALSE, FALSE, "", NULL}};
int TIFFInitPixarLog(TIFF *tif, int scheme)
{
static const char module[] = "TIFFInitPixarLog";
PixarLogState *sp;
(void)scheme;
assert(scheme == COMPRESSION_PIXARLOG);
/*
* Merge codec-specific tag information.
*/
if (!_TIFFMergeFields(tif, pixarlogFields, TIFFArrayCount(pixarlogFields)))
{
TIFFErrorExtR(tif, module,
"Merging PixarLog codec-specific tags failed");
return 0;
}
/*
* Allocate state block so tag methods have storage to record values.
*/
tif->tif_data = (uint8_t *)_TIFFmallocExt(tif, sizeof(PixarLogState));
if (tif->tif_data == NULL)
goto bad;
sp = (PixarLogState *)tif->tif_data;
_TIFFmemset(sp, 0, sizeof(*sp));
sp->stream.data_type = Z_BINARY;
sp->user_datafmt = PIXARLOGDATAFMT_UNKNOWN;
/*
* Install codec methods.
*/
tif->tif_fixuptags = PixarLogFixupTags;
tif->tif_setupdecode = PixarLogSetupDecode;
tif->tif_predecode = PixarLogPreDecode;
tif->tif_decoderow = PixarLogDecode;
tif->tif_decodestrip = PixarLogDecode;
tif->tif_decodetile = PixarLogDecode;
tif->tif_setupencode = PixarLogSetupEncode;
tif->tif_preencode = PixarLogPreEncode;
tif->tif_postencode = PixarLogPostEncode;
tif->tif_encoderow = PixarLogEncode;
tif->tif_encodestrip = PixarLogEncode;
tif->tif_encodetile = PixarLogEncode;
tif->tif_close = PixarLogClose;
tif->tif_cleanup = PixarLogCleanup;
/* Override SetField so we can handle our private pseudo-tag */
sp->vgetparent = tif->tif_tagmethods.vgetfield;
tif->tif_tagmethods.vgetfield = PixarLogVGetField; /* hook for codec tags */
sp->vsetparent = tif->tif_tagmethods.vsetfield;
tif->tif_tagmethods.vsetfield = PixarLogVSetField; /* hook for codec tags */
/* Default values for codec-specific fields */
sp->quality = Z_DEFAULT_COMPRESSION; /* default comp. level */
sp->state = 0;
/* we don't wish to use the predictor,
* the default is none, which predictor value 1
*/
(void)TIFFPredictorInit(tif);
/*
* build the companding tables
*/
PixarLogMakeTables(tif, sp);
return (1);
bad:
TIFFErrorExtR(tif, module, "No space for PixarLog state block");
return (0);
}
#endif /* PIXARLOG_SUPPORT */