Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

282 lines
9.8 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019 Intel Corporation
#include "../test_precomp.hpp"
#ifdef HAVE_INF_ENGINE
#include <stdexcept>
////////////////////////////////////////////////////////////////////////////////
// FIXME: Suppress deprecation warnings for OpenVINO 2019R2+
// BEGIN {{{
#if defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
#ifdef _MSC_VER
#pragma warning(disable: 4996) // was declared deprecated
#endif
#if defined(__GNUC__)
#pragma GCC visibility push(default)
#endif
#include <inference_engine.hpp>
#if defined(__GNUC__)
#pragma GCC visibility pop
#endif
// END }}}
////////////////////////////////////////////////////////////////////////////////
#include <ade/util/iota_range.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/infer/ie/util.hpp>
namespace opencv_test
{
namespace {
// FIXME: taken from DNN module
static void initDLDTDataPath()
{
#ifndef WINRT
static bool initialized = false;
if (!initialized)
{
const char* omzDataPath = getenv("OPENCV_OPEN_MODEL_ZOO_DATA_PATH");
if (omzDataPath)
cvtest::addDataSearchPath(omzDataPath);
const char* dnnDataPath = getenv("OPENCV_DNN_TEST_DATA_PATH");
if (dnnDataPath) {
// Add the dnnDataPath itself - G-API is using some images there directly
cvtest::addDataSearchPath(dnnDataPath);
cvtest::addDataSearchPath(dnnDataPath + std::string("/omz_intel_models"));
}
initialized = true;
}
#endif // WINRT
}
// FIXME: taken from the DNN module
void normAssert(cv::InputArray ref, cv::InputArray test,
const char *comment /*= ""*/,
double l1 = 0.00001, double lInf = 0.0001)
{
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
EXPECT_LE(normL1, l1) << comment;
double normInf = cvtest::norm(ref, test, cv::NORM_INF);
EXPECT_LE(normInf, lInf) << comment;
}
} // anonymous namespace
// TODO: Probably DNN/IE part can be further parametrized with a template
// NOTE: here ".." is used to leave the default "gapi/" search scope
TEST(TestAgeGenderIE, InferBasicTensor)
{
initDLDTDataPath();
const std::string path = "Retail/object_attributes/age_gender/dldt/age-gender-recognition-retail-0013";
const auto topology_path = findDataFile(path + ".xml", false);
const auto weights_path = findDataFile(path + ".bin", false);
// Load IE network, initialize input data using that.
namespace IE = InferenceEngine;
cv::Mat in_mat;
cv::Mat gapi_age, gapi_gender;
IE::Blob::Ptr ie_age, ie_gender;
{
IE::CNNNetReader reader;
reader.ReadNetwork(topology_path);
reader.ReadWeights(weights_path);
auto net = reader.getNetwork();
const auto &iedims = net.getInputsInfo().begin()->second->getDims();
auto cvdims = cv::gapi::ie::util::to_ocv(iedims);
std::reverse(cvdims.begin(), cvdims.end());
in_mat.create(cvdims, CV_32F);
cv::randu(in_mat, -1, 1);
auto plugin = IE::PluginDispatcher().getPluginByDevice("CPU");
auto plugin_net = plugin.LoadNetwork(net, {});
auto infer_request = plugin_net.CreateInferRequest();
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat));
infer_request.Infer();
ie_age = infer_request.GetBlob("age_conv3");
ie_gender = infer_request.GetBlob("prob");
}
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GMat in;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
topology_path, weights_path, "CPU"
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
}
TEST(TestAgeGenderIE, InferBasicImage)
{
initDLDTDataPath();
const std::string path = "Retail/object_attributes/age_gender/dldt/age-gender-recognition-retail-0013";
const auto topology_path = findDataFile(path + ".xml", false);
const auto weights_path = findDataFile(path + ".bin", false);
// FIXME: Ideally it should be an image from disk
// cv::Mat in_mat = cv::imread(findDataFile("grace_hopper_227.png"));
cv::Mat in_mat(cv::Size(320, 240), CV_8UC3);
cv::randu(in_mat, 0, 255);
cv::Mat gapi_age, gapi_gender;
// Load & run IE network
namespace IE = InferenceEngine;
IE::Blob::Ptr ie_age, ie_gender;
{
IE::CNNNetReader reader;
reader.ReadNetwork(topology_path);
reader.ReadWeights(weights_path);
auto net = reader.getNetwork();
auto &ii = net.getInputsInfo().at("data");
ii->setPrecision(IE::Precision::U8);
ii->setLayout(IE::Layout::NHWC);
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR);
auto plugin = IE::PluginDispatcher().getPluginByDevice("CPU");
auto plugin_net = plugin.LoadNetwork(net, {});
auto infer_request = plugin_net.CreateInferRequest();
infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat));
infer_request.Infer();
ie_age = infer_request.GetBlob("age_conv3");
ie_gender = infer_request.GetBlob("prob");
}
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GMat in;
cv::GMat age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
topology_path, weights_path, "CPU"
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" );
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
}
TEST(TestAgeGenderIE, InferROIList)
{
initDLDTDataPath();
const std::string path = "Retail/object_attributes/age_gender/dldt/age-gender-recognition-retail-0013";
const auto topology_path = findDataFile(path + ".xml", false);
const auto weights_path = findDataFile(path + ".bin", false);
// FIXME: Ideally it should be an image from disk
// cv::Mat in_mat = cv::imread(findDataFile("grace_hopper_227.png"));
cv::Mat in_mat(cv::Size(640, 480), CV_8UC3);
cv::randu(in_mat, 0, 255);
std::vector<cv::Rect> rois = {
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}),
cv::Rect(cv::Point{50, 100}, cv::Size{96, 160}),
};
std::vector<cv::Mat> gapi_age, gapi_gender;
// Load & run IE network
namespace IE = InferenceEngine;
std::vector<cv::Mat> ie_age, ie_gender;
{
IE::CNNNetReader reader;
reader.ReadNetwork(topology_path);
reader.ReadWeights(weights_path);
auto net = reader.getNetwork();
auto &ii = net.getInputsInfo().at("data");
ii->setPrecision(IE::Precision::U8);
ii->setLayout(IE::Layout::NHWC);
ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR);
auto plugin = IE::PluginDispatcher().getPluginByDevice("CPU");
auto plugin_net = plugin.LoadNetwork(net, {});
auto infer_request = plugin_net.CreateInferRequest();
auto frame_blob = cv::gapi::ie::util::to_ie(in_mat);
for (auto &&rc : rois) {
const auto ie_rc = IE::ROI {
0u
, static_cast<std::size_t>(rc.x)
, static_cast<std::size_t>(rc.y)
, static_cast<std::size_t>(rc.width)
, static_cast<std::size_t>(rc.height)
};
infer_request.SetBlob("data", IE::make_shared_blob(frame_blob, ie_rc));
infer_request.Infer();
using namespace cv::gapi::ie::util;
ie_age.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone());
ie_gender.push_back(to_ocv(infer_request.GetBlob("prob")).clone());
}
}
// Configure & run G-API
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
cv::GArray<cv::Rect> rr;
cv::GMat in;
cv::GArray<cv::GMat> age, gender;
std::tie(age, gender) = cv::gapi::infer<AgeGender>(rr, in);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender));
auto pp = cv::gapi::ie::Params<AgeGender> {
topology_path, weights_path, "CPU"
}.cfgOutputLayers({ "age_conv3", "prob" });
comp.apply(cv::gin(in_mat, rois), cv::gout(gapi_age, gapi_gender),
cv::compile_args(cv::gapi::networks(pp)));
// Validate with IE itself (avoid DNN module dependency here)
ASSERT_EQ(2u, ie_age.size() );
ASSERT_EQ(2u, ie_gender.size());
ASSERT_EQ(2u, gapi_age.size() );
ASSERT_EQ(2u, gapi_gender.size());
normAssert(ie_age [0], gapi_age [0], "0: Test age output");
normAssert(ie_gender[0], gapi_gender[0], "0: Test gender output");
normAssert(ie_age [1], gapi_age [1], "1: Test age output");
normAssert(ie_gender[1], gapi_gender[1], "1: Test gender output");
}
} // namespace opencv_test
#endif // HAVE_INF_ENGINE