Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1304 lines
34 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifdef HAVE_CUDA
using namespace cvtest;
using namespace testing;
///////////////////////////////////////////////////////////////////////////////////////////////////////
// integral
PARAM_TEST_CASE(Integral, cv::gpu::DeviceInfo, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
bool useRoi;
cv::Size size;
cv::Mat src;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
useRoi = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
src = randomMat(rng, size, CV_8UC1, 0.0, 255.0, false);
cv::integral(src, dst_gold, CV_32S);
}
};
TEST_P(Integral, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat gpuRes;
cv::gpu::integral(loadMat(src, useRoi), gpuRes);
gpuRes.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(ImgProc, Integral, Combine(
ALL_DEVICES,
WHOLE_SUBMAT));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// histograms
struct HistEven : TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
cv::Mat hsv;
int hbins;
float hranges[2];
cv::Mat hist_gold;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat img = readImage("stereobm/aloe-L.png");
ASSERT_FALSE(img.empty());
cv::cvtColor(img, hsv, CV_BGR2HSV);
hbins = 30;
hranges[0] = 0;
hranges[1] = 180;
int histSize[] = {hbins};
const float* ranges[] = {hranges};
cv::MatND histnd;
int channels[] = {0};
cv::calcHist(&hsv, 1, channels, cv::Mat(), histnd, 1, histSize, ranges);
hist_gold = histnd;
hist_gold = hist_gold.t();
hist_gold.convertTo(hist_gold, CV_32S);
}
};
TEST_P(HistEven, Accuracy)
{
cv::Mat hist;
std::vector<cv::gpu::GpuMat> srcs;
cv::gpu::split(loadMat(hsv), srcs);
cv::gpu::GpuMat gpuHist;
cv::gpu::histEven(srcs[0], gpuHist, hbins, (int)hranges[0], (int)hranges[1]);
gpuHist.download(hist);
EXPECT_MAT_NEAR(hist_gold, hist, 0.0);
}
INSTANTIATE_TEST_CASE_P(ImgProc, HistEven, ALL_DEVICES);
struct CalcHist : TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
cv::Mat src;
cv::Mat hist_gold;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
src = randomMat(rng, size, CV_8UC1, 0, 255, false);
hist_gold.create(1, 256, CV_32SC1);
hist_gold.setTo(cv::Scalar::all(0));
int* hist = hist_gold.ptr<int>();
for (int y = 0; y < src.rows; ++y)
{
const uchar* src_row = src.ptr(y);
for (int x = 0; x < src.cols; ++x)
++hist[src_row[x]];
}
}
};
TEST_P(CalcHist, Accuracy)
{
cv::Mat hist;
cv::gpu::GpuMat gpuHist;
cv::gpu::calcHist(loadMat(src), gpuHist);
gpuHist.download(hist);
EXPECT_MAT_NEAR(hist_gold, hist, 0.0);
}
INSTANTIATE_TEST_CASE_P(ImgProc, CalcHist, ALL_DEVICES);
struct EqualizeHist : TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
cv::Mat src;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200));
src = randomMat(rng, size, CV_8UC1, 0, 255, false);
cv::equalizeHist(src, dst_gold);
}
};
TEST_P(EqualizeHist, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat gpuDst;
cv::gpu::equalizeHist(loadMat(src), gpuDst);
gpuDst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 3.0);
}
INSTANTIATE_TEST_CASE_P(ImgProc, EqualizeHist, ALL_DEVICES);
///////////////////////////////////////////////////////////////////////////////////////////////////////
// cornerHarris
PARAM_TEST_CASE(CornerHarris, cv::gpu::DeviceInfo, MatType, BorderType, int, int)
{
cv::gpu::DeviceInfo devInfo;
int type;
int borderType;
int blockSize;
int apertureSize;
cv::Mat src;
double k;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
borderType = GET_PARAM(2);
blockSize = GET_PARAM(3);
apertureSize = GET_PARAM(4);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
cv::Mat img = readImage("stereobm/aloe-L.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(img.empty());
img.convertTo(src, type, type == CV_32F ? 1.0 / 255.0 : 1.0);
k = rng.uniform(0.1, 0.9);
cv::cornerHarris(src, dst_gold, blockSize, apertureSize, k, borderType);
}
};
TEST_P(CornerHarris, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::cornerHarris(loadMat(src), dev_dst, blockSize, apertureSize, k, borderType);
dev_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.02);
}
INSTANTIATE_TEST_CASE_P(ImgProc, CornerHarris, Combine(
ALL_DEVICES,
Values(CV_8UC1, CV_32FC1),
Values((int) cv::BORDER_REFLECT101, (int) cv::BORDER_REPLICATE, (int) cv::BORDER_REFLECT),
Values(3, 5, 7),
Values(0, 3, 5, 7)));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// cornerMinEigen
PARAM_TEST_CASE(CornerMinEigen, cv::gpu::DeviceInfo, MatType, BorderType, int, int)
{
cv::gpu::DeviceInfo devInfo;
int type;
int borderType;
int blockSize;
int apertureSize;
cv::Mat src;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
borderType = GET_PARAM(2);
blockSize = GET_PARAM(3);
apertureSize = GET_PARAM(4);
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat img = readImage("stereobm/aloe-L.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(img.empty());
img.convertTo(src, type, type == CV_32F ? 1.0 / 255.0 : 1.0);
cv::cornerMinEigenVal(src, dst_gold, blockSize, apertureSize, borderType);
}
};
TEST_P(CornerMinEigen, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::cornerMinEigenVal(loadMat(src), dev_dst, blockSize, apertureSize, borderType);
dev_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.02);
}
INSTANTIATE_TEST_CASE_P(ImgProc, CornerMinEigen, Combine(
ALL_DEVICES,
Values(CV_8UC1, CV_32FC1),
Values((int) cv::BORDER_REFLECT101, (int) cv::BORDER_REPLICATE, (int) cv::BORDER_REFLECT),
Values(3, 5, 7),
Values(0, 3, 5, 7)));
////////////////////////////////////////////////////////////////////////
// ColumnSum
struct ColumnSum : TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
cv::Mat src;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 400), rng.uniform(100, 400));
src = randomMat(rng, size, CV_32F, 0.0, 1.0, false);
}
};
TEST_P(ColumnSum, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::columnSum(loadMat(src), dev_dst);
dev_dst.download(dst);
for (int j = 0; j < src.cols; ++j)
{
float gold = src.at<float>(0, j);
float res = dst.at<float>(0, j);
ASSERT_NEAR(res, gold, 0.5);
}
for (int i = 1; i < src.rows; ++i)
{
for (int j = 0; j < src.cols; ++j)
{
float gold = src.at<float>(i, j) += src.at<float>(i - 1, j);
float res = dst.at<float>(i, j);
ASSERT_NEAR(res, gold, 0.5);
}
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, ColumnSum, ALL_DEVICES);
////////////////////////////////////////////////////////////////////////////////
// reprojectImageTo3D
PARAM_TEST_CASE(ReprojectImageTo3D, cv::gpu::DeviceInfo, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
bool useRoi;
cv::Size size;
cv::Mat disp;
cv::Mat Q;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
useRoi = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 500), rng.uniform(100, 500));
disp = randomMat(rng, size, CV_8UC1, 5.0, 30.0, false);
Q = randomMat(rng, cv::Size(4, 4), CV_32FC1, 0.1, 1.0, false);
cv::reprojectImageTo3D(disp, dst_gold, Q, false);
}
};
TEST_P(ReprojectImageTo3D, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat gpures;
cv::gpu::reprojectImageTo3D(loadMat(disp, useRoi), gpures, Q);
gpures.download(dst);
ASSERT_EQ(dst_gold.size(), dst.size());
for (int y = 0; y < dst_gold.rows; ++y)
{
const cv::Vec3f* cpu_row = dst_gold.ptr<cv::Vec3f>(y);
const cv::Vec4f* gpu_row = dst.ptr<cv::Vec4f>(y);
for (int x = 0; x < dst_gold.cols; ++x)
{
cv::Vec3f gold = cpu_row[x];
cv::Vec4f res = gpu_row[x];
ASSERT_NEAR(res[0], gold[0], 1e-5);
ASSERT_NEAR(res[1], gold[1], 1e-5);
ASSERT_NEAR(res[2], gold[2], 1e-5);
}
}
}
INSTANTIATE_TEST_CASE_P(ImgProc, ReprojectImageTo3D, Combine(ALL_DEVICES, WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// meanShift
struct MeanShift : TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
cv::Mat rgba;
int spatialRad;
int colorRad;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat img = readImage("meanshift/cones.png");
ASSERT_FALSE(img.empty());
cv::cvtColor(img, rgba, CV_BGR2BGRA);
spatialRad = 30;
colorRad = 30;
}
};
TEST_P(MeanShift, Filtering)
{
cv::Mat img_template;
if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
img_template = readImage("meanshift/con_result.png");
else
img_template = readImage("meanshift/con_result_CC1X.png");
ASSERT_FALSE(img_template.empty());
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::meanShiftFiltering(loadMat(rgba), dev_dst, spatialRad, colorRad);
dev_dst.download(dst);
ASSERT_EQ(CV_8UC4, dst.type());
cv::Mat result;
cv::cvtColor(dst, result, CV_BGRA2BGR);
EXPECT_MAT_NEAR(img_template, result, 0.0);
}
TEST_P(MeanShift, Proc)
{
cv::Mat spmap_template;
cv::FileStorage fs;
if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
fs.open(std::string(cvtest::TS::ptr()->get_data_path()) + "meanshift/spmap.yaml", cv::FileStorage::READ);
else
fs.open(std::string(cvtest::TS::ptr()->get_data_path()) + "meanshift/spmap_CC1X.yaml", cv::FileStorage::READ);
ASSERT_TRUE(fs.isOpened());
fs["spmap"] >> spmap_template;
ASSERT_TRUE(!rgba.empty() && !spmap_template.empty());
cv::Mat rmap_filtered;
cv::Mat rmap;
cv::Mat spmap;
cv::gpu::GpuMat d_rmap_filtered;
cv::gpu::meanShiftFiltering(loadMat(rgba), d_rmap_filtered, spatialRad, colorRad);
cv::gpu::GpuMat d_rmap;
cv::gpu::GpuMat d_spmap;
cv::gpu::meanShiftProc(loadMat(rgba), d_rmap, d_spmap, spatialRad, colorRad);
d_rmap_filtered.download(rmap_filtered);
d_rmap.download(rmap);
d_spmap.download(spmap);
ASSERT_EQ(CV_8UC4, rmap.type());
EXPECT_MAT_NEAR(rmap_filtered, rmap, 0.0);
EXPECT_MAT_NEAR(spmap_template, spmap, 0.0);
}
INSTANTIATE_TEST_CASE_P(ImgProc, MeanShift, ALL_DEVICES);
PARAM_TEST_CASE(MeanShiftSegmentation, cv::gpu::DeviceInfo, int)
{
cv::gpu::DeviceInfo devInfo;
int minsize;
cv::Mat rgba;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
minsize = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat img = readImage("meanshift/cones.png");
ASSERT_FALSE(img.empty());
cv::cvtColor(img, rgba, CV_BGR2BGRA);
std::ostringstream path;
path << "meanshift/cones_segmented_sp10_sr10_minsize" << minsize;
if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
path << ".png";
else
path << "_CC1X.png";
dst_gold = readImage(path.str());
ASSERT_FALSE(dst_gold.empty());
}
};
TEST_P(MeanShiftSegmentation, Regression)
{
cv::Mat dst;
cv::gpu::meanShiftSegmentation(loadMat(rgba), dst, 10, 10, minsize);
cv::Mat dst_rgb;
cv::cvtColor(dst, dst_rgb, CV_BGRA2BGR);
EXPECT_MAT_SIMILAR(dst_gold, dst_rgb, 1e-3);
}
INSTANTIATE_TEST_CASE_P(ImgProc, MeanShiftSegmentation, Combine(
ALL_DEVICES,
Values(0, 4, 20, 84, 340, 1364)));
////////////////////////////////////////////////////////////////////////////////
// matchTemplate
CV_ENUM(TemplateMethod, cv::TM_SQDIFF, cv::TM_SQDIFF_NORMED, cv::TM_CCORR, cv::TM_CCORR_NORMED, cv::TM_CCOEFF, cv::TM_CCOEFF_NORMED)
PARAM_TEST_CASE(MatchTemplate8U, cv::gpu::DeviceInfo, int, TemplateMethod)
{
cv::gpu::DeviceInfo devInfo;
int cn;
int method;
int n, m, h, w;
cv::Mat image, templ;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
cn = GET_PARAM(1);
method = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
n = rng.uniform(30, 100);
m = rng.uniform(30, 100);
h = rng.uniform(5, n - 1);
w = rng.uniform(5, m - 1);
image = randomMat(rng, cv::Size(m, n), CV_MAKETYPE(CV_8U, cn), 1.0, 10.0, false);
templ = randomMat(rng, cv::Size(w, h), CV_MAKETYPE(CV_8U, cn), 1.0, 10.0, false);
cv::matchTemplate(image, templ, dst_gold, method);
}
};
TEST_P(MatchTemplate8U, Regression)
{
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::matchTemplate(loadMat(image), loadMat(templ), dev_dst, method);
dev_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 5 * h * w * 1e-4);
}
INSTANTIATE_TEST_CASE_P(ImgProc, MatchTemplate8U, Combine(
ALL_DEVICES,
Range(1, 5),
Values((int)cv::TM_SQDIFF, (int) cv::TM_SQDIFF_NORMED, (int) cv::TM_CCORR, (int) cv::TM_CCORR_NORMED, (int) cv::TM_CCOEFF, (int) cv::TM_CCOEFF_NORMED)));
PARAM_TEST_CASE(MatchTemplate32F, cv::gpu::DeviceInfo, int, TemplateMethod)
{
cv::gpu::DeviceInfo devInfo;
int cn;
int method;
int n, m, h, w;
cv::Mat image, templ;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
cn = GET_PARAM(1);
method = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
n = rng.uniform(30, 100);
m = rng.uniform(30, 100);
h = rng.uniform(5, n - 1);
w = rng.uniform(5, m - 1);
image = randomMat(rng, cv::Size(m, n), CV_MAKETYPE(CV_32F, cn), 0.001, 1.0, false);
templ = randomMat(rng, cv::Size(w, h), CV_MAKETYPE(CV_32F, cn), 0.001, 1.0, false);
cv::matchTemplate(image, templ, dst_gold, method);
}
};
TEST_P(MatchTemplate32F, Regression)
{
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::matchTemplate(loadMat(image), loadMat(templ), dev_dst, method);
dev_dst.download(dst);
EXPECT_MAT_NEAR(dst_gold, dst, 0.25 * h * w * 1e-4);
}
INSTANTIATE_TEST_CASE_P(ImgProc, MatchTemplate32F, Combine(
ALL_DEVICES,
Range(1, 5),
Values((int) cv::TM_SQDIFF, (int) cv::TM_CCORR)));
PARAM_TEST_CASE(MatchTemplateBlackSource, cv::gpu::DeviceInfo, TemplateMethod)
{
cv::gpu::DeviceInfo devInfo;
int method;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
method = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
}
};
TEST_P(MatchTemplateBlackSource, Accuracy)
{
cv::Mat image = readImage("matchtemplate/black.png");
ASSERT_FALSE(image.empty());
cv::Mat pattern = readImage("matchtemplate/cat.png");
ASSERT_FALSE(pattern.empty());
cv::Point maxLocGold = cv::Point(284, 12);
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::matchTemplate(loadMat(image), loadMat(pattern), dev_dst, method);
dev_dst.download(dst);
double maxValue;
cv::Point maxLoc;
cv::minMaxLoc(dst, NULL, &maxValue, NULL, &maxLoc);
ASSERT_EQ(maxLocGold, maxLoc);
}
INSTANTIATE_TEST_CASE_P(ImgProc, MatchTemplateBlackSource, Combine(
ALL_DEVICES,
Values((int) cv::TM_CCOEFF_NORMED, (int) cv::TM_CCORR_NORMED)));
PARAM_TEST_CASE(MatchTemplate_CCOEF_NORMED, cv::gpu::DeviceInfo, std::pair<std::string, std::string>)
{
cv::gpu::DeviceInfo devInfo;
std::string imageName;
std::string patternName;
cv::Mat image, pattern;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
imageName = GET_PARAM(1).first;
patternName = GET_PARAM(1).second;
image = readImage(imageName);
ASSERT_FALSE(image.empty());
pattern = readImage(patternName);
ASSERT_FALSE(pattern.empty());
}
};
TEST_P(MatchTemplate_CCOEF_NORMED, Accuracy)
{
cv::Mat dstGold;
cv::matchTemplate(image, pattern, dstGold, CV_TM_CCOEFF_NORMED);
double minValGold, maxValGold;
cv::Point minLocGold, maxLocGold;
cv::minMaxLoc(dstGold, &minValGold, &maxValGold, &minLocGold, &maxLocGold);
cv::Mat dst;
cv::gpu::GpuMat dev_dst;
cv::gpu::matchTemplate(loadMat(image), loadMat(pattern), dev_dst, CV_TM_CCOEFF_NORMED);
dev_dst.download(dst);
cv::Point minLoc, maxLoc;
double minVal, maxVal;
cv::minMaxLoc(dst, &minVal, &maxVal, &minLoc, &maxLoc);
ASSERT_EQ(minLocGold, minLoc);
ASSERT_EQ(maxLocGold, maxLoc);
ASSERT_LE(maxVal, 1.);
ASSERT_GE(minVal, -1.);
}
INSTANTIATE_TEST_CASE_P(ImgProc, MatchTemplate_CCOEF_NORMED, Combine(
ALL_DEVICES,
Values(std::make_pair(std::string("matchtemplate/source-0.png"), std::string("matchtemplate/target-0.png")))));
class MatchTemplate_CanFindBigTemplate : public TestWithParam<cv::gpu::DeviceInfo>
{
virtual void SetUp()
{
cv::gpu::setDevice(GetParam().deviceID());
}
};
TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF_NORMED)
{
cv::Mat scene = readImage("matchtemplate/scene.jpg");
cv::Mat templ = readImage("matchtemplate/template.jpg");
cv::gpu::GpuMat d_scene(scene), d_templ(templ), d_result;
cv::gpu::matchTemplate(d_scene, d_templ, d_result, CV_TM_SQDIFF_NORMED);
double minVal;
cv::Point minLoc;
cv::gpu::minMaxLoc(d_result, &minVal, 0, &minLoc, 0);
ASSERT_GE(minVal, 0);
ASSERT_LT(minVal, 1e-3);
ASSERT_EQ(344, minLoc.x);
ASSERT_EQ(0, minLoc.y);
}
TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF)
{
cv::Mat scene = readImage("matchtemplate/scene.jpg");
cv::Mat templ = readImage("matchtemplate/template.jpg");
cv::gpu::GpuMat d_scene(scene), d_templ(templ), d_result;
cv::gpu::matchTemplate(d_scene, d_templ, d_result, CV_TM_SQDIFF);
double minVal;
cv::Point minLoc;
cv::gpu::minMaxLoc(d_result, &minVal, 0, &minLoc, 0);
ASSERT_GE(minVal, 0);
ASSERT_EQ(344, minLoc.x);
ASSERT_EQ(0, minLoc.y);
}
INSTANTIATE_TEST_CASE_P(ImgProc, MatchTemplate_CanFindBigTemplate, ALL_DEVICES);
////////////////////////////////////////////////////////////////////////////
// MulSpectrums
CV_FLAGS(DftFlags, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX_OUTPUT, cv::DFT_REAL_OUTPUT)
PARAM_TEST_CASE(MulSpectrums, cv::gpu::DeviceInfo, DftFlags)
{
cv::gpu::DeviceInfo devInfo;
int flag;
cv::Mat a, b;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
flag = GET_PARAM(1);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
a = randomMat(rng, cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)), CV_32FC2, 0.0, 10.0, false);
b = randomMat(rng, a.size(), CV_32FC2, 0.0, 10.0, false);
}
};
TEST_P(MulSpectrums, Simple)
{
cv::Mat c_gold;
cv::mulSpectrums(a, b, c_gold, flag, false);
cv::Mat c;
cv::gpu::GpuMat d_c;
cv::gpu::mulSpectrums(loadMat(a), loadMat(b), d_c, flag, false);
d_c.download(c);
EXPECT_MAT_NEAR(c_gold, c, 1e-4);
}
TEST_P(MulSpectrums, Scaled)
{
float scale = 1.f / a.size().area();
cv::Mat c_gold;
cv::mulSpectrums(a, b, c_gold, flag, false);
c_gold.convertTo(c_gold, c_gold.type(), scale);
cv::Mat c;
cv::gpu::GpuMat d_c;
cv::gpu::mulAndScaleSpectrums(loadMat(a), loadMat(b), d_c, flag, scale, false);
d_c.download(c);
EXPECT_MAT_NEAR(c_gold, c, 1e-4);
}
INSTANTIATE_TEST_CASE_P(ImgProc, MulSpectrums, Combine(
ALL_DEVICES,
Values(0, (int) cv::DFT_ROWS)));
////////////////////////////////////////////////////////////////////////////
// Dft
struct Dft : TestWithParam<cv::gpu::DeviceInfo>
{
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
{
devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
}
};
void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace)
{
SCOPED_TRACE(hint);
cv::RNG& rng = cvtest::TS::ptr()->get_rng();
cv::Mat a = randomMat(rng, cv::Size(cols, rows), CV_32FC2, 0.0, 10.0, false);
cv::Mat b_gold;
cv::dft(a, b_gold, flags);
cv::gpu::GpuMat d_b;
cv::gpu::GpuMat d_b_data;
if (inplace)
{
d_b_data.create(1, a.size().area(), CV_32FC2);
d_b = cv::gpu::GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
}
cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), flags);
EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
ASSERT_EQ(CV_32F, d_b.depth());
ASSERT_EQ(2, d_b.channels());
EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), rows * cols * 1e-4);
}
TEST_P(Dft, C2C)
{
cv::RNG& rng = cvtest::TS::ptr()->get_rng();
int cols = 2 + rng.next() % 100, rows = 2 + rng.next() % 100;
for (int i = 0; i < 2; ++i)
{
bool inplace = i != 0;
testC2C("no flags", cols, rows, 0, inplace);
testC2C("no flags 0 1", cols, rows + 1, 0, inplace);
testC2C("no flags 1 0", cols, rows + 1, 0, inplace);
testC2C("no flags 1 1", cols + 1, rows, 0, inplace);
testC2C("DFT_INVERSE", cols, rows, cv::DFT_INVERSE, inplace);
testC2C("DFT_ROWS", cols, rows, cv::DFT_ROWS, inplace);
testC2C("single col", 1, rows, 0, inplace);
testC2C("single row", cols, 1, 0, inplace);
testC2C("single col inversed", 1, rows, cv::DFT_INVERSE, inplace);
testC2C("single row inversed", cols, 1, cv::DFT_INVERSE, inplace);
testC2C("single row DFT_ROWS", cols, 1, cv::DFT_ROWS, inplace);
testC2C("size 1 2", 1, 2, 0, inplace);
testC2C("size 2 1", 2, 1, 0, inplace);
}
}
void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace)
{
SCOPED_TRACE(hint);
cv::RNG& rng = TS::ptr()->get_rng();
cv::Mat a = randomMat(rng, cv::Size(cols, rows), CV_32FC1, 0.0, 10.0, false);
cv::gpu::GpuMat d_b, d_c;
cv::gpu::GpuMat d_b_data, d_c_data;
if (inplace)
{
if (a.cols == 1)
{
d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2);
d_b = cv::gpu::GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
}
else
{
d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2);
d_b = cv::gpu::GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize());
}
d_c_data.create(1, a.size().area(), CV_32F);
d_c = cv::gpu::GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize());
}
cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), 0);
cv::gpu::dft(d_b, d_c, cv::Size(cols, rows), cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
EXPECT_TRUE(!inplace || d_c.ptr() == d_c_data.ptr());
ASSERT_EQ(CV_32F, d_c.depth());
ASSERT_EQ(1, d_c.channels());
cv::Mat c(d_c);
EXPECT_MAT_NEAR(a, c, rows * cols * 1e-5);
}
TEST_P(Dft, R2CThenC2R)
{
cv::RNG& rng = TS::ptr()->get_rng();
int cols = 2 + rng.next() % 100, rows = 2 + rng.next() % 100;
testR2CThenC2R("sanity", cols, rows, false);
testR2CThenC2R("sanity 0 1", cols, rows + 1, false);
testR2CThenC2R("sanity 1 0", cols + 1, rows, false);
testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, false);
testR2CThenC2R("single col", 1, rows, false);
testR2CThenC2R("single col 1", 1, rows + 1, false);
testR2CThenC2R("single row", cols, 1, false);
testR2CThenC2R("single row 1", cols + 1, 1, false);
testR2CThenC2R("sanity", cols, rows, true);
testR2CThenC2R("sanity 0 1", cols, rows + 1, true);
testR2CThenC2R("sanity 1 0", cols + 1, rows, true);
testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, true);
testR2CThenC2R("single row", cols, 1, true);
testR2CThenC2R("single row 1", cols + 1, 1, true);
}
INSTANTIATE_TEST_CASE_P(ImgProc, Dft, ALL_DEVICES);
////////////////////////////////////////////////////////////////////////////
// blend
template <typename T>
void blendLinearGold(const cv::Mat& img1, const cv::Mat& img2, const cv::Mat& weights1, const cv::Mat& weights2, cv::Mat& result_gold)
{
result_gold.create(img1.size(), img1.type());
int cn = img1.channels();
for (int y = 0; y < img1.rows; ++y)
{
const float* weights1_row = weights1.ptr<float>(y);
const float* weights2_row = weights2.ptr<float>(y);
const T* img1_row = img1.ptr<T>(y);
const T* img2_row = img2.ptr<T>(y);
T* result_gold_row = result_gold.ptr<T>(y);
for (int x = 0; x < img1.cols * cn; ++x)
{
float w1 = weights1_row[x / cn];
float w2 = weights2_row[x / cn];
result_gold_row[x] = static_cast<T>((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f));
}
}
}
PARAM_TEST_CASE(Blend, cv::gpu::DeviceInfo, MatType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int type;
bool useRoi;
cv::Size size;
cv::Mat img1;
cv::Mat img2;
cv::Mat weights1;
cv::Mat weights2;
cv::Mat result_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
type = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
size = cv::Size(200 + randInt(rng) % 1000, 200 + randInt(rng) % 1000);
int depth = CV_MAT_DEPTH(type);
img1 = randomMat(rng, size, type, 0.0, depth == CV_8U ? 255.0 : 1.0, false);
img2 = randomMat(rng, size, type, 0.0, depth == CV_8U ? 255.0 : 1.0, false);
weights1 = randomMat(rng, size, CV_32F, 0, 1, false);
weights2 = randomMat(rng, size, CV_32F, 0, 1, false);
if (depth == CV_8U)
blendLinearGold<uchar>(img1, img2, weights1, weights2, result_gold);
else
blendLinearGold<float>(img1, img2, weights1, weights2, result_gold);
}
};
TEST_P(Blend, Accuracy)
{
cv::Mat result;
cv::gpu::GpuMat d_result;
cv::gpu::blendLinear(loadMat(img1, useRoi), loadMat(img2, useRoi), loadMat(weights1, useRoi), loadMat(weights2, useRoi), d_result);
d_result.download(result);
EXPECT_MAT_NEAR(result_gold, result, CV_MAT_DEPTH(type) == CV_8U ? 1.0 : 1e-5);
}
INSTANTIATE_TEST_CASE_P(ImgProc, Blend, Combine(
ALL_DEVICES,
testing::Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////
// Canny
PARAM_TEST_CASE(Canny, cv::gpu::DeviceInfo, int, bool, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
int apperture_size;
bool L2gradient;
bool useRoi;
cv::Mat img;
double low_thresh;
double high_thresh;
cv::Mat edges_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
apperture_size = GET_PARAM(1);
L2gradient = GET_PARAM(2);
useRoi = GET_PARAM(3);
cv::gpu::setDevice(devInfo.deviceID());
img = readImage("stereobm/aloe-L.png", CV_LOAD_IMAGE_GRAYSCALE);
ASSERT_FALSE(img.empty());
low_thresh = 50.0;
high_thresh = 100.0;
cv::Canny(img, edges_gold, low_thresh, high_thresh, apperture_size, L2gradient);
}
};
TEST_P(Canny, Accuracy)
{
cv::Mat edges;
cv::gpu::GpuMat d_edges;
cv::gpu::Canny(loadMat(img, useRoi), d_edges, low_thresh, high_thresh, apperture_size, L2gradient);
d_edges.download(edges);
EXPECT_MAT_SIMILAR(edges_gold, edges, 1.0);
}
INSTANTIATE_TEST_CASE_P(ImgProc, Canny, testing::Combine(
DEVICES(cv::gpu::SHARED_ATOMICS),
Values(3, 5),
Values(false, true),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////
// convolve
namespace
{
void convolveDFT(const cv::Mat& A, const cv::Mat& B, cv::Mat& C, bool ccorr = false)
{
// reallocate the output array if needed
C.create(std::abs(A.rows - B.rows) + 1, std::abs(A.cols - B.cols) + 1, A.type());
Size dftSize;
// compute the size of DFT transform
dftSize.width = cv::getOptimalDFTSize(A.cols + B.cols - 1);
dftSize.height = cv::getOptimalDFTSize(A.rows + B.rows - 1);
// allocate temporary buffers and initialize them with 0s
cv::Mat tempA(dftSize, A.type(), cv::Scalar::all(0));
cv::Mat tempB(dftSize, B.type(), cv::Scalar::all(0));
// copy A and B to the top-left corners of tempA and tempB, respectively
cv::Mat roiA(tempA, cv::Rect(0, 0, A.cols, A.rows));
A.copyTo(roiA);
cv::Mat roiB(tempB, cv::Rect(0, 0, B.cols, B.rows));
B.copyTo(roiB);
// now transform the padded A & B in-place;
// use "nonzeroRows" hint for faster processing
cv::dft(tempA, tempA, 0, A.rows);
cv::dft(tempB, tempB, 0, B.rows);
// multiply the spectrums;
// the function handles packed spectrum representations well
cv::mulSpectrums(tempA, tempB, tempA, 0, ccorr);
// transform the product back from the frequency domain.
// Even though all the result rows will be non-zero,
// you need only the first C.rows of them, and thus you
// pass nonzeroRows == C.rows
cv::dft(tempA, tempA, cv::DFT_INVERSE + cv::DFT_SCALE, C.rows);
// now copy the result back to C.
tempA(cv::Rect(0, 0, C.cols, C.rows)).copyTo(C);
}
}
PARAM_TEST_CASE(Convolve, cv::gpu::DeviceInfo, int, bool)
{
cv::gpu::DeviceInfo devInfo;
int ksize;
bool ccorr;
cv::Mat src;
cv::Mat kernel;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
ksize = GET_PARAM(1);
ccorr = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = TS::ptr()->get_rng();
cv::Size size(rng.uniform(200, 400), rng.uniform(200, 400));
src = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false);
kernel = randomMat(rng, cv::Size(ksize, ksize), CV_32FC1, 0.0, 1.0, false);
convolveDFT(src, kernel, dst_gold, ccorr);
}
};
TEST_P(Convolve, Accuracy)
{
cv::Mat dst;
cv::gpu::GpuMat d_dst;
cv::gpu::convolve(loadMat(src), loadMat(kernel), d_dst, ccorr);
d_dst.download(dst);
EXPECT_MAT_NEAR(dst, dst_gold, 1e-1);
}
INSTANTIATE_TEST_CASE_P(ImgProc, Convolve, Combine(
ALL_DEVICES,
Values(3, 7, 11, 17, 19, 23, 45),
Bool()));
#endif // HAVE_CUDA