mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
298 lines
9.1 KiB
298 lines
9.1 KiB
14 years ago
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// Intel License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace std;
|
||
|
|
||
|
class CV_DisTransTest : public cvtest::ArrayTest
|
||
|
{
|
||
|
public:
|
||
|
CV_DisTransTest();
|
||
|
|
||
|
protected:
|
||
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
||
|
double get_success_error_level( int test_case_idx, int i, int j );
|
||
|
void run_func();
|
||
|
void prepare_to_validation( int );
|
||
|
|
||
|
void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
|
||
|
int prepare_test_case( int test_case_idx );
|
||
|
|
||
|
int mask_size;
|
||
|
int dist_type;
|
||
|
int fill_labels;
|
||
|
float mask[3];
|
||
|
};
|
||
|
|
||
|
|
||
|
CV_DisTransTest::CV_DisTransTest()
|
||
|
{
|
||
|
test_array[INPUT].push_back(NULL);
|
||
|
test_array[OUTPUT].push_back(NULL);
|
||
|
test_array[OUTPUT].push_back(NULL);
|
||
|
test_array[REF_OUTPUT].push_back(NULL);
|
||
|
test_array[REF_OUTPUT].push_back(NULL);
|
||
|
optional_mask = false;
|
||
|
element_wise_relative_error = true;
|
||
|
}
|
||
|
|
||
|
|
||
|
void CV_DisTransTest::get_test_array_types_and_sizes( int test_case_idx,
|
||
|
vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
||
|
{
|
||
|
RNG& rng = ts->get_rng();
|
||
|
cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
||
|
|
||
|
types[INPUT][0] = CV_8UC1;
|
||
|
types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_32FC1;
|
||
|
types[OUTPUT][1] = types[REF_OUTPUT][1] = CV_32SC1;
|
||
|
|
||
|
if( cvtest::randInt(rng) & 1 )
|
||
|
{
|
||
|
mask_size = 3;
|
||
|
dist_type = cvtest::randInt(rng) % 4;
|
||
|
dist_type = dist_type == 0 ? CV_DIST_C : dist_type == 1 ? CV_DIST_L1 :
|
||
|
dist_type == 2 ? CV_DIST_L2 : CV_DIST_USER;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mask_size = 5;
|
||
|
dist_type = cvtest::randInt(rng) % 10;
|
||
|
dist_type = dist_type == 0 ? CV_DIST_C : dist_type == 1 ? CV_DIST_L1 :
|
||
|
dist_type < 6 ? CV_DIST_L2 : CV_DIST_USER;
|
||
|
}
|
||
|
|
||
|
// for now, check only the "labeled" distance transform mode
|
||
|
fill_labels = 0;
|
||
|
|
||
|
if( !fill_labels )
|
||
|
sizes[OUTPUT][1] = sizes[REF_OUTPUT][1] = cvSize(0,0);
|
||
|
|
||
|
if( dist_type == CV_DIST_USER )
|
||
|
{
|
||
|
mask[0] = (float)(1.1 - cvtest::randReal(rng)*0.2);
|
||
|
mask[1] = (float)(1.9 - cvtest::randReal(rng)*0.8);
|
||
|
mask[2] = (float)(3. - cvtest::randReal(rng));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
double CV_DisTransTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
||
|
{
|
||
|
Size sz = test_mat[INPUT][0].size();
|
||
|
return dist_type == CV_DIST_C || dist_type == CV_DIST_L1 ? 0 : 0.01*MAX(sz.width, sz.height);
|
||
|
}
|
||
|
|
||
|
|
||
|
void CV_DisTransTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
|
||
|
{
|
||
|
cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
|
||
|
if( i == INPUT && CV_MAT_DEPTH(type) == CV_8U )
|
||
|
{
|
||
|
low = Scalar::all(0);
|
||
|
high = Scalar::all(10);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int CV_DisTransTest::prepare_test_case( int test_case_idx )
|
||
|
{
|
||
|
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
|
||
|
if( code > 0 )
|
||
|
{
|
||
|
// the function's response to an "all-nonzeros" image is not determined,
|
||
|
// so put at least one zero point
|
||
|
Mat& mat = test_mat[INPUT][0];
|
||
|
RNG& rng = ts->get_rng();
|
||
|
int i = cvtest::randInt(rng) % mat.rows;
|
||
|
int j = cvtest::randInt(rng) % mat.cols;
|
||
|
mat.at<uchar>(i,j) = 0;
|
||
|
}
|
||
|
|
||
|
return code;
|
||
|
}
|
||
|
|
||
|
|
||
|
void CV_DisTransTest::run_func()
|
||
|
{
|
||
|
cvDistTransform( test_array[INPUT][0], test_array[OUTPUT][0], dist_type, mask_size,
|
||
|
dist_type == CV_DIST_USER ? mask : 0, test_array[OUTPUT][1] );
|
||
|
}
|
||
|
|
||
|
|
||
|
static void
|
||
|
cvTsDistTransform( const CvMat* _src, CvMat* _dst, int dist_type,
|
||
|
int mask_size, float* _mask, CvMat* /*_labels*/ )
|
||
|
{
|
||
|
int i, j, k;
|
||
|
int width = _src->cols, height = _src->rows;
|
||
|
const float init_val = 1e6;
|
||
|
float mask[3];
|
||
|
CvMat* temp;
|
||
|
int ofs[16];
|
||
|
float delta[16];
|
||
|
int tstep, count;
|
||
|
|
||
|
assert( mask_size == 3 || mask_size == 5 );
|
||
|
|
||
|
if( dist_type == CV_DIST_USER )
|
||
|
memcpy( mask, _mask, sizeof(mask) );
|
||
|
else if( dist_type == CV_DIST_C )
|
||
|
{
|
||
|
mask_size = 3;
|
||
|
mask[0] = mask[1] = 1.f;
|
||
|
}
|
||
|
else if( dist_type == CV_DIST_L1 )
|
||
|
{
|
||
|
mask_size = 3;
|
||
|
mask[0] = 1.f;
|
||
|
mask[1] = 2.f;
|
||
|
}
|
||
|
else if( mask_size == 3 )
|
||
|
{
|
||
|
mask[0] = 0.955f;
|
||
|
mask[1] = 1.3693f;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mask[0] = 1.0f;
|
||
|
mask[1] = 1.4f;
|
||
|
mask[2] = 2.1969f;
|
||
|
}
|
||
|
|
||
|
temp = cvCreateMat( height + mask_size-1, width + mask_size-1, CV_32F );
|
||
|
tstep = temp->step / sizeof(float);
|
||
|
|
||
|
if( mask_size == 3 )
|
||
|
{
|
||
|
count = 4;
|
||
|
ofs[0] = -1; delta[0] = mask[0];
|
||
|
ofs[1] = -tstep-1; delta[1] = mask[1];
|
||
|
ofs[2] = -tstep; delta[2] = mask[0];
|
||
|
ofs[3] = -tstep+1; delta[3] = mask[1];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
count = 8;
|
||
|
ofs[0] = -1; delta[0] = mask[0];
|
||
|
ofs[1] = -tstep-2; delta[1] = mask[2];
|
||
|
ofs[2] = -tstep-1; delta[2] = mask[1];
|
||
|
ofs[3] = -tstep; delta[3] = mask[0];
|
||
|
ofs[4] = -tstep+1; delta[4] = mask[1];
|
||
|
ofs[5] = -tstep+2; delta[5] = mask[2];
|
||
|
ofs[6] = -tstep*2-1; delta[6] = mask[2];
|
||
|
ofs[7] = -tstep*2+1; delta[7] = mask[2];
|
||
|
}
|
||
|
|
||
|
for( i = 0; i < mask_size/2; i++ )
|
||
|
{
|
||
|
float* t0 = (float*)(temp->data.ptr + i*temp->step);
|
||
|
float* t1 = (float*)(temp->data.ptr + (temp->rows - i - 1)*temp->step);
|
||
|
|
||
|
for( j = 0; j < width + mask_size - 1; j++ )
|
||
|
t0[j] = t1[j] = init_val;
|
||
|
}
|
||
|
|
||
|
for( i = 0; i < height; i++ )
|
||
|
{
|
||
|
uchar* s = _src->data.ptr + i*_src->step;
|
||
|
float* tmp = (float*)(temp->data.ptr + temp->step*(i + (mask_size/2))) + (mask_size/2);
|
||
|
|
||
|
for( j = 0; j < mask_size/2; j++ )
|
||
|
tmp[-j-1] = tmp[j + width] = init_val;
|
||
|
|
||
|
for( j = 0; j < width; j++ )
|
||
|
{
|
||
|
if( s[j] == 0 )
|
||
|
tmp[j] = 0;
|
||
|
else
|
||
|
{
|
||
|
float min_dist = init_val;
|
||
|
for( k = 0; k < count; k++ )
|
||
|
{
|
||
|
float t = tmp[j+ofs[k]] + delta[k];
|
||
|
if( min_dist > t )
|
||
|
min_dist = t;
|
||
|
}
|
||
|
tmp[j] = min_dist;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for( i = height - 1; i >= 0; i-- )
|
||
|
{
|
||
|
float* d = (float*)(_dst->data.ptr + i*_dst->step);
|
||
|
float* tmp = (float*)(temp->data.ptr + temp->step*(i + (mask_size/2))) + (mask_size/2);
|
||
|
|
||
|
for( j = width - 1; j >= 0; j-- )
|
||
|
{
|
||
|
float min_dist = tmp[j];
|
||
|
if( min_dist > mask[0] )
|
||
|
{
|
||
|
for( k = 0; k < count; k++ )
|
||
|
{
|
||
|
float t = tmp[j-ofs[k]] + delta[k];
|
||
|
if( min_dist > t )
|
||
|
min_dist = t;
|
||
|
}
|
||
|
tmp[j] = min_dist;
|
||
|
}
|
||
|
d[j] = min_dist;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cvReleaseMat( &temp );
|
||
|
}
|
||
|
|
||
|
|
||
|
void CV_DisTransTest::prepare_to_validation( int /*test_case_idx*/ )
|
||
|
{
|
||
|
CvMat _input = test_mat[INPUT][0], _output = test_mat[REF_OUTPUT][0];
|
||
|
|
||
|
cvTsDistTransform( &_input, &_output, dist_type, mask_size, mask, 0 );
|
||
|
}
|
||
|
|
||
|
|
||
|
TEST(Imgproc_DistanceTransform, accuracy) { CV_DisTransTest test; test.safe_run(); }
|
||
|
|
||
|
|