Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

231 lines
6.7 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
#include "opencv2/objdetect/barcode.hpp"
#include <set>
using namespace std;
namespace opencv_test{namespace{
typedef std::set<string> StringSet;
// Convert ';'-separated strings to a set
inline static StringSet toSet(const string &line)
{
StringSet res;
string::size_type it = 0, ti;
while (true)
{
ti = line.find(';', it);
if (ti == string::npos)
{
res.insert(string(line, it, line.size() - it));
break;
}
res.insert(string(line, it, ti - it));
it = ti + 1;
}
return res;
}
// Convert vector of strings to a set
inline static StringSet toSet(const vector<string> &lines)
{
StringSet res;
for (const string & line : lines)
res.insert(line);
return res;
}
// Get all keys of a map in a vector
template<typename T, typename V>
inline static vector<T> getKeys(const map<T, V> &m)
{
vector<T> res;
for (const auto & it : m)
res.push_back(it.first);
return res;
}
struct BarcodeResult
{
string type;
string data;
};
map<string, BarcodeResult> testResults {
{ "single/book.jpg", {"EAN_13", "9787115279460"} },
{ "single/bottle_1.jpg", {"EAN_13", "6922255451427"} },
{ "single/bottle_2.jpg", {"EAN_13", "6921168509256"} },
{ "multiple/4_barcodes.jpg", {"EAN_13;EAN_13;EAN_13;EAN_13", "9787564350840;9783319200064;9787118081473;9787122276124"} },
};
typedef testing::TestWithParam< string > BarcodeDetector_main;
TEST_P(BarcodeDetector_main, interface)
{
const string fname = GetParam();
const string image_path = findDataFile(string("barcode/") + fname);
const StringSet expected_lines = toSet(testResults[fname].data);
const StringSet expected_types = toSet(testResults[fname].type);
const size_t expected_count = expected_lines.size(); // assume codes are unique
// TODO: verify points location
Mat img = imread(image_path);
ASSERT_FALSE(img.empty()) << "Can't read image: " << image_path;
barcode::BarcodeDetector det;
vector<Point2f> points;
vector<string> types;
vector<string> lines;
// common interface (single)
{
bool res = det.detect(img, points);
ASSERT_TRUE(res);
EXPECT_EQ(expected_count * 4, points.size());
}
{
string res = det.decode(img, points);
ASSERT_FALSE(res.empty());
EXPECT_EQ(1u, expected_lines.count(res));
}
{
string res = det.detectAndDecode(img, points);
ASSERT_FALSE(res.empty());
EXPECT_EQ(1u, expected_lines.count(res));
EXPECT_EQ(4u, points.size());
}
// common interface (multi)
{
bool res = det.detectMulti(img, points);
ASSERT_TRUE(res);
EXPECT_EQ(expected_count * 4, points.size());
}
{
bool res = det.decodeMulti(img, points, lines);
ASSERT_TRUE(res);
EXPECT_EQ(expected_lines, toSet(lines));
}
// specific interface
{
bool res = det.decodeWithType(img, points, lines, types);
ASSERT_TRUE(res);
EXPECT_EQ(expected_types, toSet(types));
EXPECT_EQ(expected_lines, toSet(lines));
}
{
bool res = det.detectAndDecodeWithType(img, lines, types, points);
ASSERT_TRUE(res);
EXPECT_EQ(expected_types, toSet(types));
EXPECT_EQ(expected_lines, toSet(lines));
}
}
INSTANTIATE_TEST_CASE_P(/**/, BarcodeDetector_main, testing::ValuesIn(getKeys(testResults)));
TEST(BarcodeDetector_base, invalid)
{
auto bardet = barcode::BarcodeDetector();
std::vector<Point> corners;
vector<cv::String> decoded_info;
Mat zero_image = Mat::zeros(256, 256, CV_8UC1);
EXPECT_FALSE(bardet.detectMulti(zero_image, corners));
corners = std::vector<Point>(4);
EXPECT_ANY_THROW(bardet.decodeMulti(zero_image, corners, decoded_info));
}
struct ParamStruct
{
double down_thresh;
vector<float> scales;
double grad_thresh;
unsigned res_count;
};
inline static std::ostream &operator<<(std::ostream &out, const ParamStruct &p)
{
out << "(" << p.down_thresh << ", ";
for(float val : p.scales)
out << val << ", ";
out << p.grad_thresh << ")";
return out;
}
ParamStruct param_list[] = {
{ 512, {0.01f, 0.03f, 0.06f, 0.08f}, 64, 4 }, // default values -> 4 codes
{ 512, {0.01f, 0.03f, 0.06f, 0.08f}, 1024, 2 },
{ 512, {0.01f, 0.03f, 0.06f, 0.08f}, 2048, 0 },
{ 128, {0.01f, 0.03f, 0.06f, 0.08f}, 64, 3 },
{ 64, {0.01f, 0.03f, 0.06f, 0.08f}, 64, 2 },
{ 128, {0.0000001f}, 64, 1 },
{ 128, {0.0000001f, 0.0001f}, 64, 1 },
{ 128, {0.0000001f, 0.1f}, 64, 1 },
{ 512, {0.1f}, 64, 0 },
};
typedef testing::TestWithParam<ParamStruct> BarcodeDetector_parameters_tune;
TEST_P(BarcodeDetector_parameters_tune, accuracy)
{
const ParamStruct param = GetParam();
const string fname = "multiple/4_barcodes.jpg";
const string image_path = findDataFile(string("barcode/") + fname);
const Mat img = imread(image_path);
ASSERT_FALSE(img.empty()) << "Can't read image: " << image_path;
auto bardet = barcode::BarcodeDetector();
bardet.setDownsamplingThreshold(param.down_thresh);
bardet.setDetectorScales(param.scales);
bardet.setGradientThreshold(param.grad_thresh);
vector<Point2f> points;
bardet.detectMulti(img, points);
EXPECT_EQ(points.size() / 4, param.res_count);
}
INSTANTIATE_TEST_CASE_P(/**/, BarcodeDetector_parameters_tune, testing::ValuesIn(param_list));
TEST(BarcodeDetector_parameters, regression)
{
const double expected_dt = 1024, expected_gt = 256;
const vector<float> expected_ds = {0.1f};
vector<float> ds_value = {0.0f};
auto bardet = barcode::BarcodeDetector();
bardet.setDownsamplingThreshold(expected_dt).setDetectorScales(expected_ds).setGradientThreshold(expected_gt);
double dt_value = bardet.getDownsamplingThreshold();
bardet.getDetectorScales(ds_value);
double gt_value = bardet.getGradientThreshold();
EXPECT_EQ(expected_dt, dt_value);
EXPECT_EQ(expected_ds, ds_value);
EXPECT_EQ(expected_gt, gt_value);
}
TEST(BarcodeDetector_parameters, invalid)
{
auto bardet = barcode::BarcodeDetector();
EXPECT_ANY_THROW(bardet.setDownsamplingThreshold(-1));
EXPECT_ANY_THROW(bardet.setDetectorScales(vector<float> {}));
EXPECT_ANY_THROW(bardet.setDetectorScales(vector<float> {-1}));
EXPECT_ANY_THROW(bardet.setDetectorScales(vector<float> {1.5}));
EXPECT_ANY_THROW(bardet.setDetectorScales(vector<float> (17, 0.5)));
EXPECT_ANY_THROW(bardet.setGradientThreshold(-0.1));
}
}} // opencv_test::<anonymous>::