OpenMMLab Detection Toolbox and Benchmark https://mmdetection.readthedocs.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

162 lines
4.8 KiB

import argparse
import os
import os.path as osp
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import mmcv
import numpy as np
try:
import imageio
except ImportError:
imageio = None
def parse_args():
parser = argparse.ArgumentParser(description='Create GIF for demo')
parser.add_argument(
'image_dir',
help='directory where result '
'images save path generated by ‘analyze_results.py’')
parser.add_argument(
'--out',
type=str,
default='result.gif',
help='gif path where will be saved')
args = parser.parse_args()
return args
def _generate_batch_data(sampler, batch_size):
batch = []
for idx in sampler:
batch.append(idx)
if len(batch) == batch_size:
yield batch
batch = []
if len(batch) > 0:
yield batch
def create_gif(frames, gif_name, duration=2):
"""Create gif through imageio.
Args:
frames (list[ndarray]): Image frames
gif_name (str): Saved gif name
duration (int): Display interval (s),
Default: 2
"""
if imageio is None:
raise RuntimeError('imageio is not installed,'
'Please use “pip install imageio” to install')
imageio.mimsave(gif_name, frames, 'GIF', duration=duration)
def create_frame_by_matplotlib(image_dir,
nrows=1,
fig_size=(300, 300),
font_size=15):
"""Create gif frame image through matplotlib.
Args:
image_dir (str): Root directory of result images
nrows (int): Number of rows displayed, Default: 1
fig_size (tuple): Figure size of the pyplot figure.
Default: (300, 300)
font_size (int): Font size of texts. Default: 15
Returns:
list[ndarray]: image frames
"""
result_dir_names = os.listdir(image_dir)
assert len(result_dir_names) == 2
# Longer length has higher priority
result_dir_names.reverse()
images_list = []
for dir_names in result_dir_names:
images_list.append(mmcv.scandir(osp.join(image_dir, dir_names)))
frames = []
for paths in _generate_batch_data(zip(*images_list), nrows):
fig, axes = plt.subplots(nrows=nrows, ncols=2)
fig.suptitle('Good/bad case selected according '
'to the COCO mAP of the single image')
det_patch = mpatches.Patch(color='salmon', label='prediction')
gt_patch = mpatches.Patch(color='royalblue', label='ground truth')
# bbox_to_anchor may need to be finetuned
plt.legend(
handles=[det_patch, gt_patch],
bbox_to_anchor=(1, -0.18),
loc='lower right',
borderaxespad=0.)
if nrows == 1:
axes = [axes]
dpi = fig.get_dpi()
# set fig size and margin
fig.set_size_inches(
(fig_size[0] * 2 + fig_size[0] // 20) / dpi,
(fig_size[1] * nrows + fig_size[1] // 3) / dpi,
)
fig.tight_layout()
# set subplot margin
plt.subplots_adjust(
hspace=.05,
wspace=0.05,
left=0.02,
right=0.98,
bottom=0.02,
top=0.98)
for i, (path_tuple, ax_tuple) in enumerate(zip(paths, axes)):
image_path_left = osp.join(
osp.join(image_dir, result_dir_names[0], path_tuple[0]))
image_path_right = osp.join(
osp.join(image_dir, result_dir_names[1], path_tuple[1]))
image_left = mmcv.imread(image_path_left)
image_left = mmcv.rgb2bgr(image_left)
image_right = mmcv.imread(image_path_right)
image_right = mmcv.rgb2bgr(image_right)
if i == 0:
ax_tuple[0].set_title(
result_dir_names[0], fontdict={'size': font_size})
ax_tuple[1].set_title(
result_dir_names[1], fontdict={'size': font_size})
ax_tuple[0].imshow(
image_left, extent=(0, *fig_size, 0), interpolation='bilinear')
ax_tuple[0].axis('off')
ax_tuple[1].imshow(
image_right,
extent=(0, *fig_size, 0),
interpolation='bilinear')
ax_tuple[1].axis('off')
canvas = fig.canvas
s, (width, height) = canvas.print_to_buffer()
buffer = np.frombuffer(s, dtype='uint8')
img_rgba = buffer.reshape(height, width, 4)
rgb, alpha = np.split(img_rgba, [3], axis=2)
img = rgb.astype('uint8')
frames.append(img)
return frames
def main():
args = parse_args()
frames = create_frame_by_matplotlib(args.image_dir)
create_gif(frames, args.out)
if __name__ == '__main__':
main()