OpenMMLab Detection Toolbox and Benchmark
https://mmdetection.readthedocs.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1502 lines
56 KiB
1502 lines
56 KiB
import inspect |
|
|
|
import mmcv |
|
import numpy as np |
|
from numpy import random |
|
|
|
from mmdet.core import PolygonMasks |
|
from mmdet.core.evaluation.bbox_overlaps import bbox_overlaps |
|
from ..builder import PIPELINES |
|
|
|
try: |
|
from imagecorruptions import corrupt |
|
except ImportError: |
|
corrupt = None |
|
|
|
try: |
|
import albumentations |
|
from albumentations import Compose |
|
except ImportError: |
|
albumentations = None |
|
Compose = None |
|
|
|
|
|
@PIPELINES.register_module() |
|
class Resize(object): |
|
"""Resize images & bbox & mask. |
|
|
|
This transform resizes the input image to some scale. Bboxes and masks are |
|
then resized with the same scale factor. If the input dict contains the key |
|
"scale", then the scale in the input dict is used, otherwise the specified |
|
scale in the init method is used. If the input dict contains the key |
|
"scale_factor" (if MultiScaleFlipAug does not give img_scale but |
|
scale_factor), the actual scale will be computed by image shape and |
|
scale_factor. |
|
|
|
`img_scale` can either be a tuple (single-scale) or a list of tuple |
|
(multi-scale). There are 3 multiscale modes: |
|
|
|
- ``ratio_range is not None``: randomly sample a ratio from the ratio \ |
|
range and multiply it with the image scale. |
|
- ``ratio_range is None`` and ``multiscale_mode == "range"``: randomly \ |
|
sample a scale from the multiscale range. |
|
- ``ratio_range is None`` and ``multiscale_mode == "value"``: randomly \ |
|
sample a scale from multiple scales. |
|
|
|
Args: |
|
img_scale (tuple or list[tuple]): Images scales for resizing. |
|
multiscale_mode (str): Either "range" or "value". |
|
ratio_range (tuple[float]): (min_ratio, max_ratio) |
|
keep_ratio (bool): Whether to keep the aspect ratio when resizing the |
|
image. |
|
""" |
|
|
|
def __init__(self, |
|
img_scale=None, |
|
multiscale_mode='range', |
|
ratio_range=None, |
|
keep_ratio=True): |
|
if img_scale is None: |
|
self.img_scale = None |
|
else: |
|
if isinstance(img_scale, list): |
|
self.img_scale = img_scale |
|
else: |
|
self.img_scale = [img_scale] |
|
assert mmcv.is_list_of(self.img_scale, tuple) |
|
|
|
if ratio_range is not None: |
|
# mode 1: given a scale and a range of image ratio |
|
assert len(self.img_scale) == 1 |
|
else: |
|
# mode 2: given multiple scales or a range of scales |
|
assert multiscale_mode in ['value', 'range'] |
|
|
|
self.multiscale_mode = multiscale_mode |
|
self.ratio_range = ratio_range |
|
self.keep_ratio = keep_ratio |
|
|
|
@staticmethod |
|
def random_select(img_scales): |
|
"""Randomly select an img_scale from given candidates. |
|
|
|
Args: |
|
img_scales (list[tuple]): Images scales for selection. |
|
|
|
Returns: |
|
(tuple, int): Returns a tuple ``(img_scale, scale_dix)``, \ |
|
where ``img_scale`` is the selected image scale and \ |
|
``scale_idx`` is the selected index in the given candidates. |
|
""" |
|
|
|
assert mmcv.is_list_of(img_scales, tuple) |
|
scale_idx = np.random.randint(len(img_scales)) |
|
img_scale = img_scales[scale_idx] |
|
return img_scale, scale_idx |
|
|
|
@staticmethod |
|
def random_sample(img_scales): |
|
"""Randomly sample an img_scale when ``multiscale_mode=='range'``. |
|
|
|
Args: |
|
img_scales (list[tuple]): Images scale range for sampling. |
|
There must be two tuples in img_scales, which specify the lower |
|
and uper bound of image scales. |
|
|
|
Returns: |
|
(tuple, None): Returns a tuple ``(img_scale, None)``, where \ |
|
``img_scale`` is sampled scale and None is just a placeholder \ |
|
to be consistent with :func:`random_select`. |
|
""" |
|
|
|
assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2 |
|
img_scale_long = [max(s) for s in img_scales] |
|
img_scale_short = [min(s) for s in img_scales] |
|
long_edge = np.random.randint( |
|
min(img_scale_long), |
|
max(img_scale_long) + 1) |
|
short_edge = np.random.randint( |
|
min(img_scale_short), |
|
max(img_scale_short) + 1) |
|
img_scale = (long_edge, short_edge) |
|
return img_scale, None |
|
|
|
@staticmethod |
|
def random_sample_ratio(img_scale, ratio_range): |
|
"""Randomly sample an img_scale when ``ratio_range`` is specified. |
|
|
|
A ratio will be randomly sampled from the range specified by |
|
``ratio_range``. Then it would be multiplied with ``img_scale`` to |
|
generate sampled scale. |
|
|
|
Args: |
|
img_scale (tuple): Images scale base to multiply with ratio. |
|
ratio_range (tuple[float]): The minimum and maximum ratio to scale |
|
the ``img_scale``. |
|
|
|
Returns: |
|
(tuple, None): Returns a tuple ``(scale, None)``, where \ |
|
``scale`` is sampled ratio multiplied with ``img_scale`` and \ |
|
None is just a placeholder to be consistent with \ |
|
:func:`random_select`. |
|
""" |
|
|
|
assert isinstance(img_scale, tuple) and len(img_scale) == 2 |
|
min_ratio, max_ratio = ratio_range |
|
assert min_ratio <= max_ratio |
|
ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio |
|
scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) |
|
return scale, None |
|
|
|
def _random_scale(self, results): |
|
"""Randomly sample an img_scale according to ``ratio_range`` and |
|
``multiscale_mode``. |
|
|
|
If ``ratio_range`` is specified, a ratio will be sampled and be |
|
multiplied with ``img_scale``. |
|
If multiple scales are specified by ``img_scale``, a scale will be |
|
sampled according to ``multiscale_mode``. |
|
Otherwise, single scale will be used. |
|
|
|
Args: |
|
results (dict): Result dict from :obj:`dataset`. |
|
|
|
Returns: |
|
dict: Two new keys 'scale` and 'scale_idx` are added into \ |
|
``results``, which would be used by subsequent pipelines. |
|
""" |
|
|
|
if self.ratio_range is not None: |
|
scale, scale_idx = self.random_sample_ratio( |
|
self.img_scale[0], self.ratio_range) |
|
elif len(self.img_scale) == 1: |
|
scale, scale_idx = self.img_scale[0], 0 |
|
elif self.multiscale_mode == 'range': |
|
scale, scale_idx = self.random_sample(self.img_scale) |
|
elif self.multiscale_mode == 'value': |
|
scale, scale_idx = self.random_select(self.img_scale) |
|
else: |
|
raise NotImplementedError |
|
|
|
results['scale'] = scale |
|
results['scale_idx'] = scale_idx |
|
|
|
def _resize_img(self, results): |
|
"""Resize images with ``results['scale']``.""" |
|
for key in results.get('img_fields', ['img']): |
|
if self.keep_ratio: |
|
img, scale_factor = mmcv.imrescale( |
|
results[key], results['scale'], return_scale=True) |
|
# the w_scale and h_scale has minor difference |
|
# a real fix should be done in the mmcv.imrescale in the future |
|
new_h, new_w = img.shape[:2] |
|
h, w = results[key].shape[:2] |
|
w_scale = new_w / w |
|
h_scale = new_h / h |
|
else: |
|
img, w_scale, h_scale = mmcv.imresize( |
|
results[key], results['scale'], return_scale=True) |
|
results[key] = img |
|
|
|
scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], |
|
dtype=np.float32) |
|
results['img_shape'] = img.shape |
|
# in case that there is no padding |
|
results['pad_shape'] = img.shape |
|
results['scale_factor'] = scale_factor |
|
results['keep_ratio'] = self.keep_ratio |
|
|
|
def _resize_bboxes(self, results): |
|
"""Resize bounding boxes with ``results['scale_factor']``.""" |
|
img_shape = results['img_shape'] |
|
for key in results.get('bbox_fields', []): |
|
bboxes = results[key] * results['scale_factor'] |
|
bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1]) |
|
bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0]) |
|
results[key] = bboxes |
|
|
|
def _resize_masks(self, results): |
|
"""Resize masks with ``results['scale']``""" |
|
for key in results.get('mask_fields', []): |
|
if results[key] is None: |
|
continue |
|
if self.keep_ratio: |
|
results[key] = results[key].rescale(results['scale']) |
|
else: |
|
results[key] = results[key].resize(results['img_shape'][:2]) |
|
|
|
def _resize_seg(self, results): |
|
"""Resize semantic segmentation map with ``results['scale']``.""" |
|
for key in results.get('seg_fields', []): |
|
if self.keep_ratio: |
|
gt_seg = mmcv.imrescale( |
|
results[key], results['scale'], interpolation='nearest') |
|
else: |
|
gt_seg = mmcv.imresize( |
|
results[key], results['scale'], interpolation='nearest') |
|
results['gt_semantic_seg'] = gt_seg |
|
|
|
def __call__(self, results): |
|
"""Call function to resize images, bounding boxes, masks, semantic |
|
segmentation map. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', \ |
|
'keep_ratio' keys are added into result dict. |
|
""" |
|
|
|
if 'scale' not in results: |
|
if 'scale_factor' in results: |
|
img_shape = results['img'].shape[:2] |
|
scale_factor = results['scale_factor'] |
|
assert isinstance(scale_factor, float) |
|
results['scale'] = tuple( |
|
[int(x * scale_factor) for x in img_shape][::-1]) |
|
else: |
|
self._random_scale(results) |
|
else: |
|
assert 'scale_factor' not in results, ( |
|
'scale and scale_factor cannot be both set.') |
|
|
|
self._resize_img(results) |
|
self._resize_bboxes(results) |
|
self._resize_masks(results) |
|
self._resize_seg(results) |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(img_scale={self.img_scale}, ' |
|
repr_str += f'multiscale_mode={self.multiscale_mode}, ' |
|
repr_str += f'ratio_range={self.ratio_range}, ' |
|
repr_str += f'keep_ratio={self.keep_ratio})' |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class RandomFlip(object): |
|
"""Flip the image & bbox & mask. |
|
|
|
If the input dict contains the key "flip", then the flag will be used, |
|
otherwise it will be randomly decided by a ratio specified in the init |
|
method. |
|
|
|
Args: |
|
flip_ratio (float, optional): The flipping probability. Default: None. |
|
direction(str, optional): The flipping direction. Options are |
|
'horizontal' and 'vertical'. Default: 'horizontal'. |
|
""" |
|
|
|
def __init__(self, flip_ratio=None, direction='horizontal'): |
|
self.flip_ratio = flip_ratio |
|
self.direction = direction |
|
if flip_ratio is not None: |
|
assert flip_ratio >= 0 and flip_ratio <= 1 |
|
assert direction in ['horizontal', 'vertical'] |
|
|
|
def bbox_flip(self, bboxes, img_shape, direction): |
|
"""Flip bboxes horizontally. |
|
|
|
Args: |
|
bboxes (numpy.ndarray): Bounding boxes, shape (..., 4*k) |
|
img_shape (tuple[int]): Image shape (height, width) |
|
direction (str): Flip direction. Options are 'horizontal', |
|
'vertical'. |
|
|
|
Returns: |
|
numpy.ndarray: Flipped bounding boxes. |
|
""" |
|
|
|
assert bboxes.shape[-1] % 4 == 0 |
|
flipped = bboxes.copy() |
|
if direction == 'horizontal': |
|
w = img_shape[1] |
|
flipped[..., 0::4] = w - bboxes[..., 2::4] |
|
flipped[..., 2::4] = w - bboxes[..., 0::4] |
|
elif direction == 'vertical': |
|
h = img_shape[0] |
|
flipped[..., 1::4] = h - bboxes[..., 3::4] |
|
flipped[..., 3::4] = h - bboxes[..., 1::4] |
|
else: |
|
raise ValueError(f"Invalid flipping direction '{direction}'") |
|
return flipped |
|
|
|
def __call__(self, results): |
|
"""Call function to flip bounding boxes, masks, semantic segmentation |
|
maps. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Flipped results, 'flip', 'flip_direction' keys are added \ |
|
into result dict. |
|
""" |
|
|
|
if 'flip' not in results: |
|
flip = True if np.random.rand() < self.flip_ratio else False |
|
results['flip'] = flip |
|
if 'flip_direction' not in results: |
|
results['flip_direction'] = self.direction |
|
if results['flip']: |
|
# flip image |
|
for key in results.get('img_fields', ['img']): |
|
results[key] = mmcv.imflip( |
|
results[key], direction=results['flip_direction']) |
|
# flip bboxes |
|
for key in results.get('bbox_fields', []): |
|
results[key] = self.bbox_flip(results[key], |
|
results['img_shape'], |
|
results['flip_direction']) |
|
# flip masks |
|
for key in results.get('mask_fields', []): |
|
results[key] = results[key].flip(results['flip_direction']) |
|
|
|
# flip segs |
|
for key in results.get('seg_fields', []): |
|
results[key] = mmcv.imflip( |
|
results[key], direction=results['flip_direction']) |
|
return results |
|
|
|
def __repr__(self): |
|
return self.__class__.__name__ + f'(flip_ratio={self.flip_ratio})' |
|
|
|
|
|
@PIPELINES.register_module() |
|
class Pad(object): |
|
"""Pad the image & mask. |
|
|
|
There are two padding modes: (1) pad to a fixed size and (2) pad to the |
|
minimum size that is divisible by some number. |
|
Added keys are "pad_shape", "pad_fixed_size", "pad_size_divisor", |
|
|
|
Args: |
|
size (tuple, optional): Fixed padding size. |
|
size_divisor (int, optional): The divisor of padded size. |
|
pad_val (float, optional): Padding value, 0 by default. |
|
""" |
|
|
|
def __init__(self, size=None, size_divisor=None, pad_val=0): |
|
self.size = size |
|
self.size_divisor = size_divisor |
|
self.pad_val = pad_val |
|
# only one of size and size_divisor should be valid |
|
assert size is not None or size_divisor is not None |
|
assert size is None or size_divisor is None |
|
|
|
def _pad_img(self, results): |
|
"""Pad images according to ``self.size``.""" |
|
for key in results.get('img_fields', ['img']): |
|
if self.size is not None: |
|
padded_img = mmcv.impad( |
|
results[key], shape=self.size, pad_val=self.pad_val) |
|
elif self.size_divisor is not None: |
|
padded_img = mmcv.impad_to_multiple( |
|
results[key], self.size_divisor, pad_val=self.pad_val) |
|
results[key] = padded_img |
|
results['pad_shape'] = padded_img.shape |
|
results['pad_fixed_size'] = self.size |
|
results['pad_size_divisor'] = self.size_divisor |
|
|
|
def _pad_masks(self, results): |
|
"""Pad masks according to ``results['pad_shape']``.""" |
|
pad_shape = results['pad_shape'][:2] |
|
for key in results.get('mask_fields', []): |
|
results[key] = results[key].pad(pad_shape, pad_val=self.pad_val) |
|
|
|
def _pad_seg(self, results): |
|
"""Pad semantic segmentation map according to |
|
``results['pad_shape']``.""" |
|
for key in results.get('seg_fields', []): |
|
results[key] = mmcv.impad( |
|
results[key], shape=results['pad_shape'][:2]) |
|
|
|
def __call__(self, results): |
|
"""Call function to pad images, masks, semantic segmentation maps. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Updated result dict. |
|
""" |
|
self._pad_img(results) |
|
self._pad_masks(results) |
|
self._pad_seg(results) |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(size={self.size}, ' |
|
repr_str += f'size_divisor={self.size_divisor}, ' |
|
repr_str += f'pad_val={self.pad_val})' |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class Normalize(object): |
|
"""Normalize the image. |
|
|
|
Added key is "img_norm_cfg". |
|
|
|
Args: |
|
mean (sequence): Mean values of 3 channels. |
|
std (sequence): Std values of 3 channels. |
|
to_rgb (bool): Whether to convert the image from BGR to RGB, |
|
default is true. |
|
""" |
|
|
|
def __init__(self, mean, std, to_rgb=True): |
|
self.mean = np.array(mean, dtype=np.float32) |
|
self.std = np.array(std, dtype=np.float32) |
|
self.to_rgb = to_rgb |
|
|
|
def __call__(self, results): |
|
"""Call function to normalize images. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Normalized results, 'img_norm_cfg' key is added into |
|
result dict. |
|
""" |
|
for key in results.get('img_fields', ['img']): |
|
results[key] = mmcv.imnormalize(results[key], self.mean, self.std, |
|
self.to_rgb) |
|
results['img_norm_cfg'] = dict( |
|
mean=self.mean, std=self.std, to_rgb=self.to_rgb) |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(mean={self.mean}, std={self.std}, to_rgb={self.to_rgb})' |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class RandomCrop(object): |
|
"""Random crop the image & bboxes & masks. |
|
|
|
Args: |
|
crop_size (tuple): Expected size after cropping, (h, w). |
|
allow_negative_crop (bool): Whether to allow a crop that does not |
|
contain any bbox area. Default to False. |
|
|
|
Note: |
|
- If the image is smaller than the crop size, return the original image |
|
- The keys for bboxes, labels and masks must be aligned. That is, |
|
`gt_bboxes` corresponds to `gt_labels` and `gt_masks`, and |
|
`gt_bboxes_ignore` corresponds to `gt_labels_ignore` and |
|
`gt_masks_ignore`. |
|
- If the crop does not contain any gt-bbox region and |
|
`allow_negative_crop` is set to False, skip this image. |
|
""" |
|
|
|
def __init__(self, crop_size, allow_negative_crop=False): |
|
assert crop_size[0] > 0 and crop_size[1] > 0 |
|
self.crop_size = crop_size |
|
self.allow_negative_crop = allow_negative_crop |
|
# The key correspondence from bboxes to labels and masks. |
|
self.bbox2label = { |
|
'gt_bboxes': 'gt_labels', |
|
'gt_bboxes_ignore': 'gt_labels_ignore' |
|
} |
|
self.bbox2mask = { |
|
'gt_bboxes': 'gt_masks', |
|
'gt_bboxes_ignore': 'gt_masks_ignore' |
|
} |
|
|
|
def __call__(self, results): |
|
"""Call function to randomly crop images, bounding boxes, masks, |
|
semantic segmentation maps. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Randomly cropped results, 'img_shape' key in result dict is |
|
updated according to crop size. |
|
""" |
|
|
|
for key in results.get('img_fields', ['img']): |
|
img = results[key] |
|
margin_h = max(img.shape[0] - self.crop_size[0], 0) |
|
margin_w = max(img.shape[1] - self.crop_size[1], 0) |
|
offset_h = np.random.randint(0, margin_h + 1) |
|
offset_w = np.random.randint(0, margin_w + 1) |
|
crop_y1, crop_y2 = offset_h, offset_h + self.crop_size[0] |
|
crop_x1, crop_x2 = offset_w, offset_w + self.crop_size[1] |
|
|
|
# crop the image |
|
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...] |
|
img_shape = img.shape |
|
results[key] = img |
|
results['img_shape'] = img_shape |
|
|
|
# crop bboxes accordingly and clip to the image boundary |
|
for key in results.get('bbox_fields', []): |
|
# e.g. gt_bboxes and gt_bboxes_ignore |
|
bbox_offset = np.array([offset_w, offset_h, offset_w, offset_h], |
|
dtype=np.float32) |
|
bboxes = results[key] - bbox_offset |
|
bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1]) |
|
bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0]) |
|
valid_inds = (bboxes[:, 2] > bboxes[:, 0]) & ( |
|
bboxes[:, 3] > bboxes[:, 1]) |
|
# If the crop does not contain any gt-bbox area and |
|
# self.allow_negative_crop is False, skip this image. |
|
if (key == 'gt_bboxes' and not valid_inds.any() |
|
and not self.allow_negative_crop): |
|
return None |
|
results[key] = bboxes[valid_inds, :] |
|
# label fields. e.g. gt_labels and gt_labels_ignore |
|
label_key = self.bbox2label.get(key) |
|
if label_key in results: |
|
results[label_key] = results[label_key][valid_inds] |
|
|
|
# mask fields, e.g. gt_masks and gt_masks_ignore |
|
mask_key = self.bbox2mask.get(key) |
|
if mask_key in results: |
|
results[mask_key] = results[mask_key][ |
|
valid_inds.nonzero()[0]].crop( |
|
np.asarray([crop_x1, crop_y1, crop_x2, crop_y2])) |
|
|
|
# crop semantic seg |
|
for key in results.get('seg_fields', []): |
|
results[key] = results[key][crop_y1:crop_y2, crop_x1:crop_x2] |
|
|
|
return results |
|
|
|
def __repr__(self): |
|
return self.__class__.__name__ + f'(crop_size={self.crop_size})' |
|
|
|
|
|
@PIPELINES.register_module() |
|
class SegRescale(object): |
|
"""Rescale semantic segmentation maps. |
|
|
|
Args: |
|
scale_factor (float): The scale factor of the final output. |
|
""" |
|
|
|
def __init__(self, scale_factor=1): |
|
self.scale_factor = scale_factor |
|
|
|
def __call__(self, results): |
|
"""Call function to scale the semantic segmentation map. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Result dict with semantic segmentation map scaled. |
|
""" |
|
|
|
for key in results.get('seg_fields', []): |
|
if self.scale_factor != 1: |
|
results[key] = mmcv.imrescale( |
|
results[key], self.scale_factor, interpolation='nearest') |
|
return results |
|
|
|
def __repr__(self): |
|
return self.__class__.__name__ + f'(scale_factor={self.scale_factor})' |
|
|
|
|
|
@PIPELINES.register_module() |
|
class PhotoMetricDistortion(object): |
|
"""Apply photometric distortion to image sequentially, every transformation |
|
is applied with a probability of 0.5. The position of random contrast is in |
|
second or second to last. |
|
|
|
1. random brightness |
|
2. random contrast (mode 0) |
|
3. convert color from BGR to HSV |
|
4. random saturation |
|
5. random hue |
|
6. convert color from HSV to BGR |
|
7. random contrast (mode 1) |
|
8. randomly swap channels |
|
|
|
Args: |
|
brightness_delta (int): delta of brightness. |
|
contrast_range (tuple): range of contrast. |
|
saturation_range (tuple): range of saturation. |
|
hue_delta (int): delta of hue. |
|
""" |
|
|
|
def __init__(self, |
|
brightness_delta=32, |
|
contrast_range=(0.5, 1.5), |
|
saturation_range=(0.5, 1.5), |
|
hue_delta=18): |
|
self.brightness_delta = brightness_delta |
|
self.contrast_lower, self.contrast_upper = contrast_range |
|
self.saturation_lower, self.saturation_upper = saturation_range |
|
self.hue_delta = hue_delta |
|
|
|
def __call__(self, results): |
|
"""Call function to perform photometric distortion on images. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Result dict with images distorted. |
|
""" |
|
|
|
if 'img_fields' in results: |
|
assert results['img_fields'] == ['img'], \ |
|
'Only single img_fields is allowed' |
|
img = results['img'] |
|
assert img.dtype == np.float32, \ |
|
'PhotoMetricDistortion needs the input image of dtype np.float32,'\ |
|
' please set "to_float32=True" in "LoadImageFromFile" pipeline' |
|
# random brightness |
|
if random.randint(2): |
|
delta = random.uniform(-self.brightness_delta, |
|
self.brightness_delta) |
|
img += delta |
|
|
|
# mode == 0 --> do random contrast first |
|
# mode == 1 --> do random contrast last |
|
mode = random.randint(2) |
|
if mode == 1: |
|
if random.randint(2): |
|
alpha = random.uniform(self.contrast_lower, |
|
self.contrast_upper) |
|
img *= alpha |
|
|
|
# convert color from BGR to HSV |
|
img = mmcv.bgr2hsv(img) |
|
|
|
# random saturation |
|
if random.randint(2): |
|
img[..., 1] *= random.uniform(self.saturation_lower, |
|
self.saturation_upper) |
|
|
|
# random hue |
|
if random.randint(2): |
|
img[..., 0] += random.uniform(-self.hue_delta, self.hue_delta) |
|
img[..., 0][img[..., 0] > 360] -= 360 |
|
img[..., 0][img[..., 0] < 0] += 360 |
|
|
|
# convert color from HSV to BGR |
|
img = mmcv.hsv2bgr(img) |
|
|
|
# random contrast |
|
if mode == 0: |
|
if random.randint(2): |
|
alpha = random.uniform(self.contrast_lower, |
|
self.contrast_upper) |
|
img *= alpha |
|
|
|
# randomly swap channels |
|
if random.randint(2): |
|
img = img[..., random.permutation(3)] |
|
|
|
results['img'] = img |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(\nbrightness_delta={self.brightness_delta},\n' |
|
repr_str += 'contrast_range=' |
|
repr_str += f'{(self.contrast_lower, self.contrast_upper)},\n' |
|
repr_str += 'saturation_range=' |
|
repr_str += f'{(self.saturation_lower, self.saturation_upper)},\n' |
|
repr_str += f'hue_delta={self.hue_delta})' |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class Expand(object): |
|
"""Random expand the image & bboxes. |
|
|
|
Randomly place the original image on a canvas of 'ratio' x original image |
|
size filled with mean values. The ratio is in the range of ratio_range. |
|
|
|
Args: |
|
mean (tuple): mean value of dataset. |
|
to_rgb (bool): if need to convert the order of mean to align with RGB. |
|
ratio_range (tuple): range of expand ratio. |
|
prob (float): probability of applying this transformation |
|
""" |
|
|
|
def __init__(self, |
|
mean=(0, 0, 0), |
|
to_rgb=True, |
|
ratio_range=(1, 4), |
|
seg_ignore_label=None, |
|
prob=0.5): |
|
self.to_rgb = to_rgb |
|
self.ratio_range = ratio_range |
|
if to_rgb: |
|
self.mean = mean[::-1] |
|
else: |
|
self.mean = mean |
|
self.min_ratio, self.max_ratio = ratio_range |
|
self.seg_ignore_label = seg_ignore_label |
|
self.prob = prob |
|
|
|
def __call__(self, results): |
|
"""Call function to expand images, bounding boxes. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Result dict with images, bounding boxes expanded |
|
""" |
|
|
|
if random.uniform(0, 1) > self.prob: |
|
return results |
|
|
|
if 'img_fields' in results: |
|
assert results['img_fields'] == ['img'], \ |
|
'Only single img_fields is allowed' |
|
img = results['img'] |
|
|
|
h, w, c = img.shape |
|
ratio = random.uniform(self.min_ratio, self.max_ratio) |
|
expand_img = np.full((int(h * ratio), int(w * ratio), c), |
|
self.mean, |
|
dtype=img.dtype) |
|
left = int(random.uniform(0, w * ratio - w)) |
|
top = int(random.uniform(0, h * ratio - h)) |
|
expand_img[top:top + h, left:left + w] = img |
|
|
|
results['img'] = expand_img |
|
# expand bboxes |
|
for key in results.get('bbox_fields', []): |
|
results[key] = results[key] + np.tile( |
|
(left, top), 2).astype(results[key].dtype) |
|
|
|
# expand masks |
|
for key in results.get('mask_fields', []): |
|
results[key] = results[key].expand( |
|
int(h * ratio), int(w * ratio), top, left) |
|
|
|
# expand segs |
|
for key in results.get('seg_fields', []): |
|
gt_seg = results[key] |
|
expand_gt_seg = np.full((int(h * ratio), int(w * ratio)), |
|
self.seg_ignore_label, |
|
dtype=gt_seg.dtype) |
|
expand_gt_seg[top:top + h, left:left + w] = gt_seg |
|
results[key] = expand_gt_seg |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(mean={self.mean}, to_rgb={self.to_rgb}, ' |
|
repr_str += f'ratio_range={self.ratio_range}, ' |
|
repr_str += f'seg_ignore_label={self.seg_ignore_label})' |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class MinIoURandomCrop(object): |
|
"""Random crop the image & bboxes, the cropped patches have minimum IoU |
|
requirement with original image & bboxes, the IoU threshold is randomly |
|
selected from min_ious. |
|
|
|
Args: |
|
min_ious (tuple): minimum IoU threshold for all intersections with |
|
bounding boxes |
|
min_crop_size (float): minimum crop's size (i.e. h,w := a*h, a*w, |
|
where a >= min_crop_size). |
|
|
|
Note: |
|
The keys for bboxes, labels and masks should be paired. That is, \ |
|
`gt_bboxes` corresponds to `gt_labels` and `gt_masks`, and \ |
|
`gt_bboxes_ignore` to `gt_labels_ignore` and `gt_masks_ignore`. |
|
""" |
|
|
|
def __init__(self, min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3): |
|
# 1: return ori img |
|
self.min_ious = min_ious |
|
self.sample_mode = (1, *min_ious, 0) |
|
self.min_crop_size = min_crop_size |
|
self.bbox2label = { |
|
'gt_bboxes': 'gt_labels', |
|
'gt_bboxes_ignore': 'gt_labels_ignore' |
|
} |
|
self.bbox2mask = { |
|
'gt_bboxes': 'gt_masks', |
|
'gt_bboxes_ignore': 'gt_masks_ignore' |
|
} |
|
|
|
def __call__(self, results): |
|
"""Call function to crop images and bounding boxes with minimum IoU |
|
constraint. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Result dict with images and bounding boxes cropped, \ |
|
'img_shape' key is updated. |
|
""" |
|
|
|
if 'img_fields' in results: |
|
assert results['img_fields'] == ['img'], \ |
|
'Only single img_fields is allowed' |
|
img = results['img'] |
|
assert 'bbox_fields' in results |
|
boxes = [results[key] for key in results['bbox_fields']] |
|
boxes = np.concatenate(boxes, 0) |
|
h, w, c = img.shape |
|
while True: |
|
mode = random.choice(self.sample_mode) |
|
self.mode = mode |
|
if mode == 1: |
|
return results |
|
|
|
min_iou = mode |
|
for i in range(50): |
|
new_w = random.uniform(self.min_crop_size * w, w) |
|
new_h = random.uniform(self.min_crop_size * h, h) |
|
|
|
# h / w in [0.5, 2] |
|
if new_h / new_w < 0.5 or new_h / new_w > 2: |
|
continue |
|
|
|
left = random.uniform(w - new_w) |
|
top = random.uniform(h - new_h) |
|
|
|
patch = np.array( |
|
(int(left), int(top), int(left + new_w), int(top + new_h))) |
|
# Line or point crop is not allowed |
|
if patch[2] == patch[0] or patch[3] == patch[1]: |
|
continue |
|
overlaps = bbox_overlaps( |
|
patch.reshape(-1, 4), boxes.reshape(-1, 4)).reshape(-1) |
|
if len(overlaps) > 0 and overlaps.min() < min_iou: |
|
continue |
|
|
|
# center of boxes should inside the crop img |
|
# only adjust boxes and instance masks when the gt is not empty |
|
if len(overlaps) > 0: |
|
# adjust boxes |
|
def is_center_of_bboxes_in_patch(boxes, patch): |
|
center = (boxes[:, :2] + boxes[:, 2:]) / 2 |
|
mask = ((center[:, 0] > patch[0]) * |
|
(center[:, 1] > patch[1]) * |
|
(center[:, 0] < patch[2]) * |
|
(center[:, 1] < patch[3])) |
|
return mask |
|
|
|
mask = is_center_of_bboxes_in_patch(boxes, patch) |
|
if not mask.any(): |
|
continue |
|
for key in results.get('bbox_fields', []): |
|
boxes = results[key].copy() |
|
mask = is_center_of_bboxes_in_patch(boxes, patch) |
|
boxes = boxes[mask] |
|
boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:]) |
|
boxes[:, :2] = boxes[:, :2].clip(min=patch[:2]) |
|
boxes -= np.tile(patch[:2], 2) |
|
|
|
results[key] = boxes |
|
# labels |
|
label_key = self.bbox2label.get(key) |
|
if label_key in results: |
|
results[label_key] = results[label_key][mask] |
|
|
|
# mask fields |
|
mask_key = self.bbox2mask.get(key) |
|
if mask_key in results: |
|
results[mask_key] = results[mask_key][ |
|
mask.nonzero()[0]].crop(patch) |
|
# adjust the img no matter whether the gt is empty before crop |
|
img = img[patch[1]:patch[3], patch[0]:patch[2]] |
|
results['img'] = img |
|
results['img_shape'] = img.shape |
|
|
|
# seg fields |
|
for key in results.get('seg_fields', []): |
|
results[key] = results[key][patch[1]:patch[3], |
|
patch[0]:patch[2]] |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(min_ious={self.min_ious}, ' |
|
repr_str += f'min_crop_size={self.min_crop_size})' |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class Corrupt(object): |
|
"""Corruption augmentation. |
|
|
|
Corruption transforms implemented based on |
|
`imagecorruptions <https://github.com/bethgelab/imagecorruptions>`_. |
|
|
|
Args: |
|
corruption (str): Corruption name. |
|
severity (int, optional): The severity of corruption. Default: 1. |
|
""" |
|
|
|
def __init__(self, corruption, severity=1): |
|
self.corruption = corruption |
|
self.severity = severity |
|
|
|
def __call__(self, results): |
|
"""Call function to corrupt image. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Result dict with images corrupted. |
|
""" |
|
|
|
if corrupt is None: |
|
raise RuntimeError('imagecorruptions is not installed') |
|
if 'img_fields' in results: |
|
assert results['img_fields'] == ['img'], \ |
|
'Only single img_fields is allowed' |
|
results['img'] = corrupt( |
|
results['img'].astype(np.uint8), |
|
corruption_name=self.corruption, |
|
severity=self.severity) |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(corruption={self.corruption}, ' |
|
repr_str += f'severity={self.severity})' |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class Albu(object): |
|
"""Albumentation augmentation. |
|
|
|
Adds custom transformations from Albumentations library. |
|
Please, visit `https://albumentations.readthedocs.io` |
|
to get more information. |
|
|
|
An example of ``transforms`` is as followed: |
|
|
|
.. code-block:: |
|
|
|
[ |
|
dict( |
|
type='ShiftScaleRotate', |
|
shift_limit=0.0625, |
|
scale_limit=0.0, |
|
rotate_limit=0, |
|
interpolation=1, |
|
p=0.5), |
|
dict( |
|
type='RandomBrightnessContrast', |
|
brightness_limit=[0.1, 0.3], |
|
contrast_limit=[0.1, 0.3], |
|
p=0.2), |
|
dict(type='ChannelShuffle', p=0.1), |
|
dict( |
|
type='OneOf', |
|
transforms=[ |
|
dict(type='Blur', blur_limit=3, p=1.0), |
|
dict(type='MedianBlur', blur_limit=3, p=1.0) |
|
], |
|
p=0.1), |
|
] |
|
|
|
Args: |
|
transforms (list[dict]): A list of albu transformations |
|
bbox_params (dict): Bbox_params for albumentation `Compose` |
|
keymap (dict): Contains {'input key':'albumentation-style key'} |
|
skip_img_without_anno (bool): Whether to skip the image if no ann left |
|
after aug |
|
""" |
|
|
|
def __init__(self, |
|
transforms, |
|
bbox_params=None, |
|
keymap=None, |
|
update_pad_shape=False, |
|
skip_img_without_anno=False): |
|
if Compose is None: |
|
raise RuntimeError('albumentations is not installed') |
|
|
|
self.transforms = transforms |
|
self.filter_lost_elements = False |
|
self.update_pad_shape = update_pad_shape |
|
self.skip_img_without_anno = skip_img_without_anno |
|
|
|
# A simple workaround to remove masks without boxes |
|
if (isinstance(bbox_params, dict) and 'label_fields' in bbox_params |
|
and 'filter_lost_elements' in bbox_params): |
|
self.filter_lost_elements = True |
|
self.origin_label_fields = bbox_params['label_fields'] |
|
bbox_params['label_fields'] = ['idx_mapper'] |
|
del bbox_params['filter_lost_elements'] |
|
|
|
self.bbox_params = ( |
|
self.albu_builder(bbox_params) if bbox_params else None) |
|
self.aug = Compose([self.albu_builder(t) for t in self.transforms], |
|
bbox_params=self.bbox_params) |
|
|
|
if not keymap: |
|
self.keymap_to_albu = { |
|
'img': 'image', |
|
'gt_masks': 'masks', |
|
'gt_bboxes': 'bboxes' |
|
} |
|
else: |
|
self.keymap_to_albu = keymap |
|
self.keymap_back = {v: k for k, v in self.keymap_to_albu.items()} |
|
|
|
def albu_builder(self, cfg): |
|
"""Import a module from albumentations. |
|
|
|
It inherits some of :func:`build_from_cfg` logic. |
|
|
|
Args: |
|
cfg (dict): Config dict. It should at least contain the key "type". |
|
|
|
Returns: |
|
obj: The constructed object. |
|
""" |
|
|
|
assert isinstance(cfg, dict) and 'type' in cfg |
|
args = cfg.copy() |
|
|
|
obj_type = args.pop('type') |
|
if mmcv.is_str(obj_type): |
|
if albumentations is None: |
|
raise RuntimeError('albumentations is not installed') |
|
obj_cls = getattr(albumentations, obj_type) |
|
elif inspect.isclass(obj_type): |
|
obj_cls = obj_type |
|
else: |
|
raise TypeError( |
|
f'type must be a str or valid type, but got {type(obj_type)}') |
|
|
|
if 'transforms' in args: |
|
args['transforms'] = [ |
|
self.albu_builder(transform) |
|
for transform in args['transforms'] |
|
] |
|
|
|
return obj_cls(**args) |
|
|
|
@staticmethod |
|
def mapper(d, keymap): |
|
"""Dictionary mapper. Renames keys according to keymap provided. |
|
|
|
Args: |
|
d (dict): old dict |
|
keymap (dict): {'old_key':'new_key'} |
|
Returns: |
|
dict: new dict. |
|
""" |
|
|
|
updated_dict = {} |
|
for k, v in zip(d.keys(), d.values()): |
|
new_k = keymap.get(k, k) |
|
updated_dict[new_k] = d[k] |
|
return updated_dict |
|
|
|
def __call__(self, results): |
|
# dict to albumentations format |
|
results = self.mapper(results, self.keymap_to_albu) |
|
# TODO: add bbox_fields |
|
if 'bboxes' in results: |
|
# to list of boxes |
|
if isinstance(results['bboxes'], np.ndarray): |
|
results['bboxes'] = [x for x in results['bboxes']] |
|
# add pseudo-field for filtration |
|
if self.filter_lost_elements: |
|
results['idx_mapper'] = np.arange(len(results['bboxes'])) |
|
|
|
# TODO: Support mask structure in albu |
|
if 'masks' in results: |
|
if isinstance(results['masks'], PolygonMasks): |
|
raise NotImplementedError( |
|
'Albu only supports BitMap masks now') |
|
ori_masks = results['masks'] |
|
results['masks'] = results['masks'].masks |
|
|
|
results = self.aug(**results) |
|
|
|
if 'bboxes' in results: |
|
if isinstance(results['bboxes'], list): |
|
results['bboxes'] = np.array( |
|
results['bboxes'], dtype=np.float32) |
|
results['bboxes'] = results['bboxes'].reshape(-1, 4) |
|
|
|
# filter label_fields |
|
if self.filter_lost_elements: |
|
|
|
for label in self.origin_label_fields: |
|
results[label] = np.array( |
|
[results[label][i] for i in results['idx_mapper']]) |
|
if 'masks' in results: |
|
results['masks'] = np.array( |
|
[results['masks'][i] for i in results['idx_mapper']]) |
|
results['masks'] = ori_masks.__class__( |
|
results['masks'], results['image'].shape[0], |
|
results['image'].shape[1]) |
|
|
|
if (not len(results['idx_mapper']) |
|
and self.skip_img_without_anno): |
|
return None |
|
|
|
if 'gt_labels' in results: |
|
if isinstance(results['gt_labels'], list): |
|
results['gt_labels'] = np.array(results['gt_labels']) |
|
results['gt_labels'] = results['gt_labels'].astype(np.int64) |
|
|
|
# back to the original format |
|
results = self.mapper(results, self.keymap_back) |
|
|
|
# update final shape |
|
if self.update_pad_shape: |
|
results['pad_shape'] = results['img'].shape |
|
|
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ + f'(transforms={self.transforms})' |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class RandomCenterCropPad(object): |
|
"""Random center crop and random around padding for CornerNet. |
|
|
|
This operation generates randomly cropped image from the original image and |
|
pads it simultaneously. Different from :class:`RandomCrop`, the output |
|
shape may not equal to ``crop_size`` strictly. We choose a random value |
|
from ``ratios`` and the output shape could be larger or smaller than |
|
``crop_size``. The padding operation is also different from :class:`Pad`, |
|
here we use around padding instead of right-bottom padding. |
|
|
|
The relation between output image (padding image) and original image: |
|
|
|
.. code-block:: |
|
|
|
output image |
|
+----------------------------+ |
|
| padded area | |
|
+------|----------------------------|----------+ |
|
| | cropped area | | |
|
| | +---------------+ | | |
|
| | | . center | | | original image |
|
| | | range | | | |
|
| | +---------------+ | | |
|
+------|----------------------------|----------+ |
|
| padded area | |
|
+----------------------------+ |
|
|
|
There are 5 main areas in the figure: |
|
|
|
- output image: output image of this operation, also called padding \ |
|
image in following instruction. |
|
- original image: input image of this operation. |
|
- padded area: non-intersect area of output image and original image. |
|
- cropped area: the overlap of output image and original image. |
|
- center range: a smaller area where random center chosen from. \ |
|
center range is computed by `border` and original image's shape \ |
|
to avoid our random center is too close to original image's border. |
|
|
|
Also this operation act differently in train and test mode, the summary |
|
pipeline is listed below. |
|
|
|
Train pipeline: |
|
|
|
1. Choose a `random_ratio` from `ratios`, the shape of padding image \ |
|
will be `random_ratio * crop_size`. |
|
2. Choose a `random_center` in `center range`. |
|
3. Generate padding image with center matches the `random_center`. |
|
4. Initialize the padding image with pixel value equals to `mean`. |
|
5. Copy the `cropped area` to padding image. |
|
6. Refine annotations. |
|
|
|
Test pipeline: |
|
|
|
1. Compute output shape according to `test_pad_mode`. |
|
2. Generate padding image with center matches the original image \ |
|
center. |
|
3. Initialize the padding image with pixel value equals to `mean`. |
|
4. Copy the `cropped area` to padding image. |
|
|
|
Args: |
|
crop_size (tuple | None): expected size after crop, final size will |
|
computed according to ratio. Requires (h, w) in train mode, and |
|
None in test mode. |
|
ratios (tuple): random select a ratio from tuple and crop image to |
|
(crop_size[0] * ratio) * (crop_size[1] * ratio). |
|
Only available in train mode. |
|
border (int): max distance from center select area to image border. |
|
Only available in train mode. |
|
mean (sequence): Mean values of 3 channels. |
|
std (sequence): Std values of 3 channels. |
|
to_rgb (bool): Whether to convert the image from BGR to RGB. |
|
test_mode (bool): whether involve random variables in transform. |
|
In train mode, crop_size is fixed, center coords and ratio is |
|
random selected from predefined lists. In test mode, crop_size |
|
is image's original shape, center coords and ratio is fixed. |
|
test_pad_mode (tuple): padding method and padding shape value, only |
|
available in test mode. Default is using 'logical_or' with |
|
127 as padding shape value. |
|
|
|
- 'logical_or': final_shape = input_shape | padding_shape_value |
|
- 'size_divisor': final_shape = int( \ |
|
ceil(input_shape / padding_shape_value) * padding_shape_value) |
|
""" |
|
|
|
def __init__(self, |
|
crop_size=None, |
|
ratios=(0.9, 1.0, 1.1), |
|
border=128, |
|
mean=None, |
|
std=None, |
|
to_rgb=None, |
|
test_mode=False, |
|
test_pad_mode=('logical_or', 127)): |
|
if test_mode: |
|
assert crop_size is None, 'crop_size must be None in test mode' |
|
assert ratios is None, 'ratios must be None in test mode' |
|
assert border is None, 'border must be None in test mode' |
|
assert isinstance(test_pad_mode, (list, tuple)) |
|
assert test_pad_mode[0] in ['logical_or', 'size_divisor'] |
|
else: |
|
assert isinstance(crop_size, (list, tuple)) |
|
assert crop_size[0] > 0 and crop_size[1] > 0, ( |
|
'crop_size must > 0 in train mode') |
|
assert isinstance(ratios, (list, tuple)) |
|
assert test_pad_mode is None, ( |
|
'test_pad_mode must be None in train mode') |
|
|
|
self.crop_size = crop_size |
|
self.ratios = ratios |
|
self.border = border |
|
# We do not set default value to mean, std and to_rgb because these |
|
# hyper-parameters are easy to forget but could affect the performance. |
|
# Please use the same setting as Normalize for performance assurance. |
|
assert mean is not None and std is not None and to_rgb is not None |
|
self.to_rgb = to_rgb |
|
self.input_mean = mean |
|
self.input_std = std |
|
if to_rgb: |
|
self.mean = mean[::-1] |
|
self.std = std[::-1] |
|
else: |
|
self.mean = mean |
|
self.std = std |
|
self.test_mode = test_mode |
|
self.test_pad_mode = test_pad_mode |
|
|
|
def _get_border(self, border, size): |
|
"""Get final border for the target size. |
|
|
|
This function generates a `final_border` according to image's shape. |
|
The area between `final_border` and `size - final_border` is the |
|
`center range`. We randomly choose center from the `center range` |
|
to avoid our random center is too close to original image's border. |
|
|
|
Args: |
|
border (int): The initial border, default is 128. |
|
size (int): The width or height of original image. |
|
Returns: |
|
int: The final border. |
|
""" |
|
i = pow(2, np.ceil(np.log2(np.ceil(2 * border / size)))) |
|
return border // i |
|
|
|
def _filter_boxes(self, patch, boxes): |
|
"""Check whether the center of each box is in the patch. |
|
|
|
Args: |
|
patch (list[int]): The cropped area, [left, top, right, bottom]. |
|
boxes (numpy array, (N x 4)): Ground truth boxes. |
|
|
|
Returns: |
|
mask (numpy array, (N,)): Each box is inside or outside the patch. |
|
""" |
|
center = (boxes[:, :2] + boxes[:, 2:]) / 2 |
|
mask = (center[:, 0] > patch[0]) * (center[:, 1] > patch[1]) * ( |
|
center[:, 0] < patch[2]) * ( |
|
center[:, 1] < patch[3]) |
|
return mask |
|
|
|
def _crop_image_and_paste(self, image, center, size): |
|
"""Crop image with a given center and size, then paste the cropped |
|
image to a blank image with two centers align. |
|
|
|
This function is equivalent to generating a blank image with `size` as |
|
its shape. Then cover it on the original image with two centers ( |
|
the center of blank image and the random center of original image) |
|
aligned. The overlap area is paste from the original image and the |
|
outside area is filled with `mean pixel`. |
|
|
|
Args: |
|
image (np array, H x W x C): Original image. |
|
center (list[int]): Target crop center coord. |
|
size (list[int]): Target crop size. [target_h, target_w] |
|
|
|
Returns: |
|
cropped_img (np array, target_h x target_w x C): Cropped image. |
|
border (np array, 4): The distance of four border of `cropped_img` |
|
to the original image area, [top, bottom, left, right] |
|
patch (list[int]): The cropped area, [left, top, right, bottom]. |
|
""" |
|
center_y, center_x = center |
|
target_h, target_w = size |
|
img_h, img_w, img_c = image.shape |
|
|
|
x0 = max(0, center_x - target_w // 2) |
|
x1 = min(center_x + target_w // 2, img_w) |
|
y0 = max(0, center_y - target_h // 2) |
|
y1 = min(center_y + target_h // 2, img_h) |
|
patch = np.array((int(x0), int(y0), int(x1), int(y1))) |
|
|
|
left, right = center_x - x0, x1 - center_x |
|
top, bottom = center_y - y0, y1 - center_y |
|
|
|
cropped_center_y, cropped_center_x = target_h // 2, target_w // 2 |
|
cropped_img = np.zeros((target_h, target_w, img_c), dtype=image.dtype) |
|
for i in range(img_c): |
|
cropped_img[:, :, i] += self.mean[i] |
|
y_slice = slice(cropped_center_y - top, cropped_center_y + bottom) |
|
x_slice = slice(cropped_center_x - left, cropped_center_x + right) |
|
cropped_img[y_slice, x_slice, :] = image[y0:y1, x0:x1, :] |
|
|
|
border = np.array([ |
|
cropped_center_y - top, cropped_center_y + bottom, |
|
cropped_center_x - left, cropped_center_x + right |
|
], |
|
dtype=np.float32) |
|
|
|
return cropped_img, border, patch |
|
|
|
def _train_aug(self, results): |
|
"""Random crop and around padding the original image. |
|
|
|
Args: |
|
results (dict): Image infomations in the augment pipeline. |
|
Returns: |
|
results (dict): The updated dict. |
|
""" |
|
img = results['img'] |
|
h, w, c = img.shape |
|
boxes = results['gt_bboxes'] |
|
while True: |
|
scale = random.choice(self.ratios) |
|
new_h = int(self.crop_size[0] * scale) |
|
new_w = int(self.crop_size[1] * scale) |
|
h_border = self._get_border(self.border, h) |
|
w_border = self._get_border(self.border, w) |
|
|
|
for i in range(50): |
|
center_x = random.randint(low=w_border, high=w - w_border) |
|
center_y = random.randint(low=h_border, high=h - h_border) |
|
|
|
cropped_img, border, patch = self._crop_image_and_paste( |
|
img, [center_y, center_x], [new_h, new_w]) |
|
|
|
mask = self._filter_boxes(patch, boxes) |
|
# if image do not have valid bbox, any crop patch is valid. |
|
if not mask.any() and len(boxes) > 0: |
|
continue |
|
|
|
results['img'] = cropped_img |
|
results['img_shape'] = cropped_img.shape |
|
results['pad_shape'] = cropped_img.shape |
|
|
|
x0, y0, x1, y1 = patch |
|
|
|
left_w, top_h = center_x - x0, center_y - y0 |
|
cropped_center_x, cropped_center_y = new_w // 2, new_h // 2 |
|
|
|
# crop bboxes accordingly and clip to the image boundary |
|
for key in results.get('bbox_fields', []): |
|
mask = self._filter_boxes(patch, results[key]) |
|
bboxes = results[key][mask] |
|
bboxes[:, 0:4:2] += cropped_center_x - left_w - x0 |
|
bboxes[:, 1:4:2] += cropped_center_y - top_h - y0 |
|
bboxes[:, 0:4:2] = np.clip(bboxes[:, 0:4:2], 0, new_w) |
|
bboxes[:, 1:4:2] = np.clip(bboxes[:, 1:4:2], 0, new_h) |
|
keep = (bboxes[:, 2] > bboxes[:, 0]) & ( |
|
bboxes[:, 3] > bboxes[:, 1]) |
|
bboxes = bboxes[keep] |
|
results[key] = bboxes |
|
if key in ['gt_bboxes']: |
|
if 'gt_labels' in results: |
|
labels = results['gt_labels'][mask] |
|
labels = labels[keep] |
|
results['gt_labels'] = labels |
|
if 'gt_masks' in results: |
|
raise NotImplementedError( |
|
'RandomCenterCropPad only supports bbox.') |
|
|
|
# crop semantic seg |
|
for key in results.get('seg_fields', []): |
|
raise NotImplementedError( |
|
'RandomCenterCropPad only supports bbox.') |
|
return results |
|
|
|
def _test_aug(self, results): |
|
"""Around padding the original image without cropping. |
|
|
|
The padding mode and value are from `test_pad_mode`. |
|
|
|
Args: |
|
results (dict): Image infomations in the augment pipeline. |
|
Returns: |
|
results (dict): The updated dict. |
|
""" |
|
img = results['img'] |
|
h, w, c = img.shape |
|
results['img_shape'] = img.shape |
|
if self.test_pad_mode[0] in ['logical_or']: |
|
target_h = h | self.test_pad_mode[1] |
|
target_w = w | self.test_pad_mode[1] |
|
elif self.test_pad_mode[0] in ['size_divisor']: |
|
divisor = self.test_pad_mode[1] |
|
target_h = int(np.ceil(h / divisor)) * divisor |
|
target_w = int(np.ceil(w / divisor)) * divisor |
|
else: |
|
raise NotImplementedError( |
|
'RandomCenterCropPad only support two testing pad mode:' |
|
'logical-or and size_divisor.') |
|
|
|
cropped_img, border, _ = self._crop_image_and_paste( |
|
img, [h // 2, w // 2], [target_h, target_w]) |
|
results['img'] = cropped_img |
|
results['pad_shape'] = cropped_img.shape |
|
results['border'] = border |
|
return results |
|
|
|
def __call__(self, results): |
|
img = results['img'] |
|
assert img.dtype == np.float32, ( |
|
'RandomCenterCropPad needs the input image of dtype np.float32,' |
|
' please set "to_float32=True" in "LoadImageFromFile" pipeline') |
|
h, w, c = img.shape |
|
assert c == len(self.mean) |
|
if self.test_mode: |
|
return self._test_aug(results) |
|
else: |
|
return self._train_aug(results) |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(crop_size={self.crop_size}, ' |
|
repr_str += f'ratios={self.ratios}, ' |
|
repr_str += f'border={self.border}, ' |
|
repr_str += f'mean={self.input_mean}, ' |
|
repr_str += f'std={self.input_std}, ' |
|
repr_str += f'to_rgb={self.to_rgb}, ' |
|
repr_str += f'test_mode={self.test_mode}, ' |
|
repr_str += f'test_pad_mode={self.test_pad_mode})' |
|
return repr_str
|
|
|