OpenMMLab Detection Toolbox and Benchmark
https://mmdetection.readthedocs.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
286 lines
11 KiB
286 lines
11 KiB
# Copyright (c) OpenMMLab. All rights reserved. |
|
import argparse |
|
import os |
|
import os.path as osp |
|
import time |
|
import warnings |
|
|
|
import mmcv |
|
import torch |
|
from mmcv import Config, DictAction |
|
from mmcv.cnn import fuse_conv_bn |
|
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint, |
|
wrap_fp16_model) |
|
|
|
from mmdet.apis import multi_gpu_test, single_gpu_test |
|
from mmdet.datasets import (build_dataloader, build_dataset, |
|
replace_ImageToTensor) |
|
from mmdet.models import build_detector |
|
from mmdet.utils import (build_ddp, build_dp, compat_cfg, get_device, |
|
replace_cfg_vals, rfnext_init_model, |
|
setup_multi_processes, update_data_root) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description='MMDet test (and eval) a model') |
|
parser.add_argument('config', help='test config file path') |
|
parser.add_argument('checkpoint', help='checkpoint file') |
|
parser.add_argument( |
|
'--work-dir', |
|
help='the directory to save the file containing evaluation metrics') |
|
parser.add_argument('--out', help='output result file in pickle format') |
|
parser.add_argument( |
|
'--fuse-conv-bn', |
|
action='store_true', |
|
help='Whether to fuse conv and bn, this will slightly increase' |
|
'the inference speed') |
|
parser.add_argument( |
|
'--gpu-ids', |
|
type=int, |
|
nargs='+', |
|
help='(Deprecated, please use --gpu-id) ids of gpus to use ' |
|
'(only applicable to non-distributed training)') |
|
parser.add_argument( |
|
'--gpu-id', |
|
type=int, |
|
default=0, |
|
help='id of gpu to use ' |
|
'(only applicable to non-distributed testing)') |
|
parser.add_argument( |
|
'--format-only', |
|
action='store_true', |
|
help='Format the output results without perform evaluation. It is' |
|
'useful when you want to format the result to a specific format and ' |
|
'submit it to the test server') |
|
parser.add_argument( |
|
'--eval', |
|
type=str, |
|
nargs='+', |
|
help='evaluation metrics, which depends on the dataset, e.g., "bbox",' |
|
' "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC') |
|
parser.add_argument('--show', action='store_true', help='show results') |
|
parser.add_argument( |
|
'--show-dir', help='directory where painted images will be saved') |
|
parser.add_argument( |
|
'--show-score-thr', |
|
type=float, |
|
default=0.3, |
|
help='score threshold (default: 0.3)') |
|
parser.add_argument( |
|
'--gpu-collect', |
|
action='store_true', |
|
help='whether to use gpu to collect results.') |
|
parser.add_argument( |
|
'--tmpdir', |
|
help='tmp directory used for collecting results from multiple ' |
|
'workers, available when gpu-collect is not specified') |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
parser.add_argument( |
|
'--options', |
|
nargs='+', |
|
action=DictAction, |
|
help='custom options for evaluation, the key-value pair in xxx=yyy ' |
|
'format will be kwargs for dataset.evaluate() function (deprecate), ' |
|
'change to --eval-options instead.') |
|
parser.add_argument( |
|
'--eval-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='custom options for evaluation, the key-value pair in xxx=yyy ' |
|
'format will be kwargs for dataset.evaluate() function') |
|
parser.add_argument( |
|
'--launcher', |
|
choices=['none', 'pytorch', 'slurm', 'mpi'], |
|
default='none', |
|
help='job launcher') |
|
parser.add_argument('--local_rank', type=int, default=0) |
|
args = parser.parse_args() |
|
if 'LOCAL_RANK' not in os.environ: |
|
os.environ['LOCAL_RANK'] = str(args.local_rank) |
|
|
|
if args.options and args.eval_options: |
|
raise ValueError( |
|
'--options and --eval-options cannot be both ' |
|
'specified, --options is deprecated in favor of --eval-options') |
|
if args.options: |
|
warnings.warn('--options is deprecated in favor of --eval-options') |
|
args.eval_options = args.options |
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
assert args.out or args.eval or args.format_only or args.show \ |
|
or args.show_dir, \ |
|
('Please specify at least one operation (save/eval/format/show the ' |
|
'results / save the results) with the argument "--out", "--eval"' |
|
', "--format-only", "--show" or "--show-dir"') |
|
|
|
if args.eval and args.format_only: |
|
raise ValueError('--eval and --format_only cannot be both specified') |
|
|
|
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): |
|
raise ValueError('The output file must be a pkl file.') |
|
|
|
cfg = Config.fromfile(args.config) |
|
|
|
# replace the ${key} with the value of cfg.key |
|
cfg = replace_cfg_vals(cfg) |
|
|
|
# update data root according to MMDET_DATASETS |
|
update_data_root(cfg) |
|
|
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
|
|
cfg = compat_cfg(cfg) |
|
|
|
# set multi-process settings |
|
setup_multi_processes(cfg) |
|
|
|
# set cudnn_benchmark |
|
if cfg.get('cudnn_benchmark', False): |
|
torch.backends.cudnn.benchmark = True |
|
|
|
if 'pretrained' in cfg.model: |
|
cfg.model.pretrained = None |
|
elif 'init_cfg' in cfg.model.backbone: |
|
cfg.model.backbone.init_cfg = None |
|
|
|
if cfg.model.get('neck'): |
|
if isinstance(cfg.model.neck, list): |
|
for neck_cfg in cfg.model.neck: |
|
if neck_cfg.get('rfp_backbone'): |
|
if neck_cfg.rfp_backbone.get('pretrained'): |
|
neck_cfg.rfp_backbone.pretrained = None |
|
elif cfg.model.neck.get('rfp_backbone'): |
|
if cfg.model.neck.rfp_backbone.get('pretrained'): |
|
cfg.model.neck.rfp_backbone.pretrained = None |
|
|
|
if args.gpu_ids is not None: |
|
cfg.gpu_ids = args.gpu_ids[0:1] |
|
warnings.warn('`--gpu-ids` is deprecated, please use `--gpu-id`. ' |
|
'Because we only support single GPU mode in ' |
|
'non-distributed testing. Use the first GPU ' |
|
'in `gpu_ids` now.') |
|
else: |
|
cfg.gpu_ids = [args.gpu_id] |
|
cfg.device = get_device() |
|
# init distributed env first, since logger depends on the dist info. |
|
if args.launcher == 'none': |
|
distributed = False |
|
else: |
|
distributed = True |
|
init_dist(args.launcher, **cfg.dist_params) |
|
|
|
test_dataloader_default_args = dict( |
|
samples_per_gpu=1, workers_per_gpu=2, dist=distributed, shuffle=False) |
|
|
|
# in case the test dataset is concatenated |
|
if isinstance(cfg.data.test, dict): |
|
cfg.data.test.test_mode = True |
|
if cfg.data.test_dataloader.get('samples_per_gpu', 1) > 1: |
|
# Replace 'ImageToTensor' to 'DefaultFormatBundle' |
|
cfg.data.test.pipeline = replace_ImageToTensor( |
|
cfg.data.test.pipeline) |
|
elif isinstance(cfg.data.test, list): |
|
for ds_cfg in cfg.data.test: |
|
ds_cfg.test_mode = True |
|
if cfg.data.test_dataloader.get('samples_per_gpu', 1) > 1: |
|
for ds_cfg in cfg.data.test: |
|
ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline) |
|
|
|
test_loader_cfg = { |
|
**test_dataloader_default_args, |
|
**cfg.data.get('test_dataloader', {}) |
|
} |
|
|
|
rank, _ = get_dist_info() |
|
# allows not to create |
|
if args.work_dir is not None and rank == 0: |
|
mmcv.mkdir_or_exist(osp.abspath(args.work_dir)) |
|
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) |
|
json_file = osp.join(args.work_dir, f'eval_{timestamp}.json') |
|
|
|
# build the dataloader |
|
dataset = build_dataset(cfg.data.test) |
|
data_loader = build_dataloader(dataset, **test_loader_cfg) |
|
|
|
# build the model and load checkpoint |
|
cfg.model.train_cfg = None |
|
model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg')) |
|
# init rfnext if 'RFSearchHook' is defined in cfg |
|
rfnext_init_model(model, cfg=cfg) |
|
fp16_cfg = cfg.get('fp16', None) |
|
if fp16_cfg is None and cfg.get('device', None) == 'npu': |
|
fp16_cfg = dict(loss_scale='dynamic') |
|
if fp16_cfg is not None: |
|
wrap_fp16_model(model) |
|
checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') |
|
if args.fuse_conv_bn: |
|
model = fuse_conv_bn(model) |
|
# old versions did not save class info in checkpoints, this walkaround is |
|
# for backward compatibility |
|
if 'CLASSES' in checkpoint.get('meta', {}): |
|
model.CLASSES = checkpoint['meta']['CLASSES'] |
|
else: |
|
model.CLASSES = dataset.CLASSES |
|
|
|
if not distributed: |
|
model = build_dp(model, cfg.device, device_ids=cfg.gpu_ids) |
|
outputs = single_gpu_test(model, data_loader, args.show, args.show_dir, |
|
args.show_score_thr) |
|
else: |
|
model = build_ddp( |
|
model, |
|
cfg.device, |
|
device_ids=[int(os.environ['LOCAL_RANK'])], |
|
broadcast_buffers=False) |
|
|
|
# In multi_gpu_test, if tmpdir is None, some tesnors |
|
# will init on cuda by default, and no device choice supported. |
|
# Init a tmpdir to avoid error on npu here. |
|
if cfg.device == 'npu' and args.tmpdir is None: |
|
args.tmpdir = './npu_tmpdir' |
|
|
|
outputs = multi_gpu_test( |
|
model, data_loader, args.tmpdir, args.gpu_collect |
|
or cfg.evaluation.get('gpu_collect', False)) |
|
|
|
rank, _ = get_dist_info() |
|
if rank == 0: |
|
if args.out: |
|
print(f'\nwriting results to {args.out}') |
|
mmcv.dump(outputs, args.out) |
|
kwargs = {} if args.eval_options is None else args.eval_options |
|
if args.format_only: |
|
dataset.format_results(outputs, **kwargs) |
|
if args.eval: |
|
eval_kwargs = cfg.get('evaluation', {}).copy() |
|
# hard-code way to remove EvalHook args |
|
for key in [ |
|
'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best', |
|
'rule', 'dynamic_intervals' |
|
]: |
|
eval_kwargs.pop(key, None) |
|
eval_kwargs.update(dict(metric=args.eval, **kwargs)) |
|
metric = dataset.evaluate(outputs, **eval_kwargs) |
|
print(metric) |
|
metric_dict = dict(config=args.config, metric=metric) |
|
if args.work_dir is not None and rank == 0: |
|
mmcv.dump(metric_dict, json_file) |
|
|
|
|
|
if __name__ == '__main__': |
|
main()
|
|
|