OpenMMLab Detection Toolbox and Benchmark https://mmdetection.readthedocs.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
Kai Chen c298a0a366
fix the jupyter notebook demo (#2814)
5 years ago
.dev_scripts Update model performance (#2762) 5 years ago
.github Fix typos (#2768) 5 years ago
configs Implement NASFCOS (#2682) 5 years ago
demo fix the jupyter notebook demo (#2814) 5 years ago
docker Fix typos (#2768) 5 years ago
docs Fix gcc requirement (#2806) 5 years ago
mmdet fix the jupyter notebook demo (#2814) 5 years ago
requirements Implement NASFCOS (#2682) 5 years ago
tests Implement NASFCOS (#2682) 5 years ago
tools Support RegNetX models (#2710) 5 years ago
.gitignore Fix typos (#2768) 5 years ago
.isort.cfg Fix typos (#2768) 5 years ago
.pre-commit-config.yaml Update model performance (#2762) 5 years ago
.readthedocs.yml Fix typos (#2768) 5 years ago
.style.yapf Fix typos (#2768) 5 years ago
.travis.yml Fix typos (#2768) 5 years ago
LICENSE Fix typos (#2768) 5 years ago
README.md Implement NASFCOS (#2682) 5 years ago
pytest.ini Fix typos (#2768) 5 years ago
requirements.txt Fix typos (#2768) 5 years ago
setup.py Fix typos (#2768) 5 years ago

README.md

MMDetection

News: We released the technical report on ArXiv.

Documentation: https://mmdetection.readthedocs.io/

Introduction

The master branch works with PyTorch 1.3 to 1.5. The old v1.x branch works with PyTorch 1.1 to 1.4, but v2.0 is strongly recommended for faster speed, higher performance, better design and more friendly usage.

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project developed by Multimedia Laboratory, CUHK.

demo image

Major features

  • Modular Design

    We decompose the detection framework into different components and one can easily construct a customized object detection framework by combining different modules.

  • Support of multiple frameworks out of box

    The toolbox directly supports popular and contemporary detection frameworks, e.g. Faster RCNN, Mask RCNN, RetinaNet, etc.

  • High efficiency

    All basic bbox and mask operations run on GPUs. The training speed is faster than or comparable to other codebases, including Detectron2, maskrcnn-benchmark and SimpleDet.

  • State of the art

    The toolbox stems from the codebase developed by the MMDet team, who won COCO Detection Challenge in 2018, and we keep pushing it forward.

Apart from MMDetection, we also released a library mmcv for computer vision research, which is heavily depended on by this toolbox.

License

This project is released under the Apache 2.0 license.

Changelog

v2.0.0 was released in 6/5/2020. Please refer to changelog.md for details and release history. A comparison between v1.x and v2.0 codebases can be found in compatibility.md.

Benchmark and model zoo

Supported methods and backbones are shown in the below table. Results and models are available in the model zoo.

ResNet ResNeXt SENet VGG HRNet RegNetX Res2Net
RPN
Fast R-CNN
Faster R-CNN
Mask R-CNN
Cascade R-CNN
Cascade Mask R-CNN
SSD
RetinaNet
GHM
Mask Scoring R-CNN
Double-Head R-CNN
Grid R-CNN (Plus)
Hybrid Task Cascade
Libra R-CNN
Guided Anchoring
FCOS
RepPoints
Foveabox
FreeAnchor
NAS-FPN
ATSS
FSAF
PAFPN
NAS-FCOS
PISA

Other features

Some other methods are also supported in projects using MMDetection.

Installation

Please refer to install.md for installation and dataset preparation.

Get Started

Please see getting_started.md for the basic usage of MMDetection.

Contributing

We appreciate all contributions to improve MMDetection. Please refer to CONTRIBUTING.md for the contributing guideline.

Acknowledgement

MMDetection is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors.

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@article{mmdetection,
  title   = {{MMDetection}: Open MMLab Detection Toolbox and Benchmark},
  author  = {Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and
             Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and
             Liu, Ziwei and Xu, Jiarui and Zhang, Zheng and Cheng, Dazhi and
             Zhu, Chenchen and Cheng, Tianheng and Zhao, Qijie and Li, Buyu and
             Lu, Xin and Zhu, Rui and Wu, Yue and Dai, Jifeng and Wang, Jingdong
             and Shi, Jianping and Ouyang, Wanli and Loy, Chen Change and Lin, Dahua},
  journal= {arXiv preprint arXiv:1906.07155},
  year={2019}
}

Contact

This repo is currently maintained by Kai Chen (@hellock), Yuhang Cao (@yhcao6), Wenwei Zhang (@ZwwWayne), Jiarui Xu (@xvjiarui). Other core developers include Jiangmiao Pang (@OceanPang) and Jiaqi Wang (@myownskyW7).