OpenMMLab Detection Toolbox and Benchmark https://mmdetection.readthedocs.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

459 lines
17 KiB

import argparse
import copy
import os
import os.path as osp
import shutil
import tempfile
import mmcv
import torch
import torch.distributed as dist
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint,
wrap_fp16_model)
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from robustness_eval import get_results
from mmdet import datasets
from mmdet.apis import set_random_seed
from mmdet.core import encode_mask_results, eval_map
from mmdet.datasets import build_dataloader, build_dataset
from mmdet.models import build_detector
def coco_eval_with_return(result_files,
result_types,
coco,
max_dets=(100, 300, 1000)):
for res_type in result_types:
assert res_type in ['proposal', 'bbox', 'segm', 'keypoints']
if mmcv.is_str(coco):
coco = COCO(coco)
assert isinstance(coco, COCO)
eval_results = {}
for res_type in result_types:
result_file = result_files[res_type]
assert result_file.endswith('.json')
coco_dets = coco.loadRes(result_file)
img_ids = coco.getImgIds()
iou_type = 'bbox' if res_type == 'proposal' else res_type
cocoEval = COCOeval(coco, coco_dets, iou_type)
cocoEval.params.imgIds = img_ids
if res_type == 'proposal':
cocoEval.params.useCats = 0
cocoEval.params.maxDets = list(max_dets)
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
if res_type == 'segm' or res_type == 'bbox':
metric_names = [
'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10',
'AR100', 'ARs', 'ARm', 'ARl'
]
eval_results[res_type] = {
metric_names[i]: cocoEval.stats[i]
for i in range(len(metric_names))
}
else:
eval_results[res_type] = cocoEval.stats
return eval_results
def voc_eval_with_return(result_file,
dataset,
iou_thr=0.5,
logger='print',
only_ap=True):
det_results = mmcv.load(result_file)
annotations = [dataset.get_ann_info(i) for i in range(len(dataset))]
if hasattr(dataset, 'year') and dataset.year == 2007:
dataset_name = 'voc07'
else:
dataset_name = dataset.CLASSES
mean_ap, eval_results = eval_map(
det_results,
annotations,
scale_ranges=None,
iou_thr=iou_thr,
dataset=dataset_name,
logger=logger)
if only_ap:
eval_results = [{
'ap': eval_results[i]['ap']
} for i in range(len(eval_results))]
return mean_ap, eval_results
def single_gpu_test(model, data_loader, show=False):
model.eval()
results = []
dataset = data_loader.dataset
prog_bar = mmcv.ProgressBar(len(dataset))
for i, data in enumerate(data_loader):
with torch.no_grad():
result = model(return_loss=False, rescale=not show, **data)
if show:
model.module.show_result(data, result, dataset.img_norm_cfg)
# encode mask results
if isinstance(result[0], tuple):
result = [(bbox_results, encode_mask_results(mask_results))
for bbox_results, mask_results in result]
results.extend(result)
batch_size = len(result)
for _ in range(batch_size):
prog_bar.update()
return results
def multi_gpu_test(model, data_loader, tmpdir=None):
model.eval()
results = []
dataset = data_loader.dataset
rank, world_size = get_dist_info()
if rank == 0:
prog_bar = mmcv.ProgressBar(len(dataset))
for i, data in enumerate(data_loader):
with torch.no_grad():
result = model(return_loss=False, rescale=True, **data)
# encode mask results
if isinstance(result[0], tuple):
result = [(bbox_results, encode_mask_results(mask_results))
for bbox_results, mask_results in result]
results.extend(result)
if rank == 0:
batch_size = len(result)
for _ in range(batch_size * world_size):
prog_bar.update()
# collect results from all ranks
results = collect_results(results, len(dataset), tmpdir)
return results
def collect_results(result_part, size, tmpdir=None):
rank, world_size = get_dist_info()
# create a tmp dir if it is not specified
if tmpdir is None:
MAX_LEN = 512
# 32 is whitespace
dir_tensor = torch.full((MAX_LEN, ),
32,
dtype=torch.uint8,
device='cuda')
if rank == 0:
tmpdir = tempfile.mkdtemp()
tmpdir = torch.tensor(
bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
dir_tensor[:len(tmpdir)] = tmpdir
dist.broadcast(dir_tensor, 0)
tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
else:
mmcv.mkdir_or_exist(tmpdir)
# dump the part result to the dir
mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl'))
dist.barrier()
# collect all parts
if rank != 0:
return None
else:
# load results of all parts from tmp dir
part_list = []
for i in range(world_size):
part_file = osp.join(tmpdir, f'part_{i}.pkl')
part_list.append(mmcv.load(part_file))
# sort the results
ordered_results = []
for res in zip(*part_list):
ordered_results.extend(list(res))
# the dataloader may pad some samples
ordered_results = ordered_results[:size]
# remove tmp dir
shutil.rmtree(tmpdir)
return ordered_results
def parse_args():
parser = argparse.ArgumentParser(description='MMDet test detector')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument('--out', help='output result file')
parser.add_argument(
'--corruptions',
type=str,
nargs='+',
default='benchmark',
choices=[
'all', 'benchmark', 'noise', 'blur', 'weather', 'digital',
'holdout', 'None', 'gaussian_noise', 'shot_noise', 'impulse_noise',
'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur', 'snow',
'frost', 'fog', 'brightness', 'contrast', 'elastic_transform',
'pixelate', 'jpeg_compression', 'speckle_noise', 'gaussian_blur',
'spatter', 'saturate'
],
help='corruptions')
parser.add_argument(
'--severities',
type=int,
nargs='+',
default=[0, 1, 2, 3, 4, 5],
help='corruption severity levels')
parser.add_argument(
'--eval',
type=str,
nargs='+',
choices=['proposal', 'proposal_fast', 'bbox', 'segm', 'keypoints'],
help='eval types')
parser.add_argument(
'--iou-thr',
type=float,
default=0.5,
help='IoU threshold for pascal voc evaluation')
parser.add_argument(
'--summaries',
type=bool,
default=False,
help='Print summaries for every corruption and severity')
parser.add_argument(
'--workers', type=int, default=32, help='workers per gpu')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument('--tmpdir', help='tmp dir for writing some results')
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument(
'--final-prints',
type=str,
nargs='+',
choices=['P', 'mPC', 'rPC'],
default='mPC',
help='corruption benchmark metric to print at the end')
parser.add_argument(
'--final-prints-aggregate',
type=str,
choices=['all', 'benchmark'],
default='benchmark',
help='aggregate all results or only those for benchmark corruptions')
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
assert args.out or args.show, \
('Please specify at least one operation (save or show the results) '
'with the argument "--out" or "--show"')
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
raise ValueError('The output file must be a pkl file.')
cfg = mmcv.Config.fromfile(args.config)
# import modules from string list.
if cfg.get('custom_imports', None):
from mmcv.utils import import_modules_from_strings
import_modules_from_strings(**cfg['custom_imports'])
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.model.pretrained = None
cfg.data.test.test_mode = True
if args.workers == 0:
args.workers = cfg.data.workers_per_gpu
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# set random seeds
if args.seed is not None:
set_random_seed(args.seed)
if 'all' in args.corruptions:
corruptions = [
'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur',
'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog',
'brightness', 'contrast', 'elastic_transform', 'pixelate',
'jpeg_compression', 'speckle_noise', 'gaussian_blur', 'spatter',
'saturate'
]
elif 'benchmark' in args.corruptions:
corruptions = [
'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur',
'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog',
'brightness', 'contrast', 'elastic_transform', 'pixelate',
'jpeg_compression'
]
elif 'noise' in args.corruptions:
corruptions = ['gaussian_noise', 'shot_noise', 'impulse_noise']
elif 'blur' in args.corruptions:
corruptions = [
'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur'
]
elif 'weather' in args.corruptions:
corruptions = ['snow', 'frost', 'fog', 'brightness']
elif 'digital' in args.corruptions:
corruptions = [
'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression'
]
elif 'holdout' in args.corruptions:
corruptions = ['speckle_noise', 'gaussian_blur', 'spatter', 'saturate']
elif 'None' in args.corruptions:
corruptions = ['None']
args.severities = [0]
else:
corruptions = args.corruptions
rank, _ = get_dist_info()
aggregated_results = {}
for corr_i, corruption in enumerate(corruptions):
aggregated_results[corruption] = {}
for sev_i, corruption_severity in enumerate(args.severities):
# evaluate severity 0 (= no corruption) only once
if corr_i > 0 and corruption_severity == 0:
aggregated_results[corruption][0] = \
aggregated_results[corruptions[0]][0]
continue
test_data_cfg = copy.deepcopy(cfg.data.test)
# assign corruption and severity
if corruption_severity > 0:
corruption_trans = dict(
type='Corrupt',
corruption=corruption,
severity=corruption_severity)
# TODO: hard coded "1", we assume that the first step is
# loading images, which needs to be fixed in the future
test_data_cfg['pipeline'].insert(1, corruption_trans)
# print info
print(f'\nTesting {corruption} at severity {corruption_severity}')
# build the dataloader
# TODO: support multiple images per gpu
# (only minor changes are needed)
dataset = build_dataset(test_data_cfg)
data_loader = build_dataloader(
dataset,
samples_per_gpu=1,
workers_per_gpu=args.workers,
dist=distributed,
shuffle=False)
# build the model and load checkpoint
model = build_detector(
cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
checkpoint = load_checkpoint(
model, args.checkpoint, map_location='cpu')
# old versions did not save class info in checkpoints,
# this walkaround is for backward compatibility
if 'CLASSES' in checkpoint['meta']:
model.CLASSES = checkpoint['meta']['CLASSES']
else:
model.CLASSES = dataset.CLASSES
if not distributed:
model = MMDataParallel(model, device_ids=[0])
outputs = single_gpu_test(model, data_loader, args.show)
else:
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False)
outputs = multi_gpu_test(model, data_loader, args.tmpdir)
if args.out and rank == 0:
eval_results_filename = (
osp.splitext(args.out)[0] + '_results' +
osp.splitext(args.out)[1])
mmcv.dump(outputs, args.out)
eval_types = args.eval
if cfg.dataset_type == 'VOCDataset':
if eval_types:
for eval_type in eval_types:
if eval_type == 'bbox':
test_dataset = mmcv.runner.obj_from_dict(
cfg.data.test, datasets)
logger = 'print' if args.summaries else None
mean_ap, eval_results = \
voc_eval_with_return(
args.out, test_dataset,
args.iou_thr, logger)
aggregated_results[corruption][
corruption_severity] = eval_results
else:
print('\nOnly "bbox" evaluation \
is supported for pascal voc')
else:
if eval_types:
print(f'Starting evaluate {" and ".join(eval_types)}')
if eval_types == ['proposal_fast']:
result_file = args.out
else:
if not isinstance(outputs[0], dict):
result_files = dataset.results2json(
outputs, args.out)
else:
for name in outputs[0]:
print(f'\nEvaluating {name}')
outputs_ = [out[name] for out in outputs]
result_file = args.out
+ f'.{name}'
result_files = dataset.results2json(
outputs_, result_file)
eval_results = coco_eval_with_return(
result_files, eval_types, dataset.coco)
aggregated_results[corruption][
corruption_severity] = eval_results
else:
print('\nNo task was selected for evaluation;'
'\nUse --eval to select a task')
# save results after each evaluation
mmcv.dump(aggregated_results, eval_results_filename)
if rank == 0:
# print filan results
print('\nAggregated results:')
prints = args.final_prints
aggregate = args.final_prints_aggregate
if cfg.dataset_type == 'VOCDataset':
get_results(
eval_results_filename,
dataset='voc',
prints=prints,
aggregate=aggregate)
else:
get_results(
eval_results_filename,
dataset='coco',
prints=prints,
aggregate=aggregate)
if __name__ == '__main__':
main()