OpenMMLab Detection Toolbox and Benchmark https://mmdetection.readthedocs.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

58 lines
8.1 KiB

# Projects based on MMDetection
There are many projects built upon MMDetection.
We list some of them as examples of how to extend MMDetection for your own projects.
As the page might not be completed, please feel free to create a PR to update this page.
## Projects as an extension
Some projects extend the boundary of MMDetection for deployment or other research fields.
They reveal the potential of what MMDetection can do. We list several of them as below.
- [OTEDetection](https://github.com/opencv/mmdetection): OpenVINO training extensions for object detection.
- [MMDetection3d](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
## Projects of papers
There are also projects released with papers.
Some of the papers are published in top-tier conferences (CVPR, ICCV, and ECCV), the others are also highly influential.
To make this list also a reference for the community to develop and compare new object detection algorithms, we list them following the time order of top-tier conferences.
Methods already supported and maintained by MMDetection are not listed.
- Involution: Inverting the Inherence of Convolution for Visual Recognition, CVPR21. [[paper]](https://arxiv.org/abs/2103.06255)[[github]](https://github.com/d-li14/involution)
- Multiple Instance Active Learning for Object Detection, CVPR 2021. [[paper]](https://openaccess.thecvf.com/content/CVPR2021/papers/Yuan_Multiple_Instance_Active_Learning_for_Object_Detection_CVPR_2021_paper.pdf)[[github]](https://github.com/yuantn/MI-AOD)
- Adaptive Class Suppression Loss for Long-Tail Object Detection, CVPR 2021. [[paper]](https://arxiv.org/abs/2104.00885)[[github]](https://github.com/CASIA-IVA-Lab/ACSL)
- Generalizable Pedestrian Detection: The Elephant In The Room, CVPR2021. [[paper]](https://arxiv.org/abs/2003.08799)[[github]](https://github.com/hasanirtiza/Pedestron)
- Group Fisher Pruning for Practical Network Compression, ICML2021. [[paper]](https://github.com/jshilong/FisherPruning/blob/main/resources/paper.pdf)[[github]](https://github.com/jshilong/FisherPruning)
- Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax, CVPR2020. [[paper]](http://openaccess.thecvf.com/content_CVPR_2020/papers/Li_Overcoming_Classifier_Imbalance_for_Long-Tail_Object_Detection_With_Balanced_Group_CVPR_2020_paper.pdf)[[github]](https://github.com/FishYuLi/BalancedGroupSoftmax)
- Coherent Reconstruction of Multiple Humans from a Single Image, CVPR2020. [[paper]](https://jiangwenpl.github.io/multiperson/)[[github]](https://github.com/JiangWenPL/multiperson)
- Look-into-Object: Self-supervised Structure Modeling for Object Recognition, CVPR 2020. [[paper]](http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhou_Look-Into-Object_Self-Supervised_Structure_Modeling_for_Object_Recognition_CVPR_2020_paper.pdf)[[github]](https://github.com/JDAI-CV/LIO)
- Video Panoptic Segmentation, CVPR2020. [[paper]](https://arxiv.org/abs/2006.11339)[[github]](https://github.com/mcahny/vps)
- D2Det: Towards High Quality Object Detection and Instance Segmentation, CVPR2020. [[paper]](http://openaccess.thecvf.com/content_CVPR_2020/html/Cao_D2Det_Towards_High_Quality_Object_Detection_and_Instance_Segmentation_CVPR_2020_paper.html)[[github]](https://github.com/JialeCao001/D2Det)
- CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection, CVPR2020. [[paper]](https://arxiv.org/abs/2003.09119)[[github]](https://github.com/KiveeDong/CentripetalNet)
- Learning a Unified Sample Weighting Network for Object Detection, CVPR 2020. [[paper]](http://openaccess.thecvf.com/content_CVPR_2020/html/Cai_Learning_a_Unified_Sample_Weighting_Network_for_Object_Detection_CVPR_2020_paper.html)[[github]](https://github.com/caiqi/sample-weighting-network)
- Scale-equalizing Pyramid Convolution for Object Detection, CVPR2020. [[paper]](https://arxiv.org/abs/2005.03101) [[github]](https://github.com/jshilong/SEPC)
- Revisiting the Sibling Head in Object Detector, CVPR2020. [[paper]](https://arxiv.org/abs/2003.07540)[[github]](https://github.com/Sense-X/TSD)
- PolarMask: Single Shot Instance Segmentation with Polar Representation, CVPR2020. [[paper]](https://arxiv.org/abs/1909.13226)[[github]](https://github.com/xieenze/PolarMask)
- Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection, CVPR2020. [[paper]](https://arxiv.org/abs/2003.11818)[[github]](https://github.com/ggjy/HitDet.pytorch)
- ZeroQ: A Novel Zero Shot Quantization Framework, CVPR2020. [[paper]](https://arxiv.org/abs/2001.00281)[[github]](https://github.com/amirgholami/ZeroQ)
- CBNet: A Novel Composite Backbone Network Architecture for Object Detection, AAAI2020. [[paper]](https://aaai.org/Papers/AAAI/2020GB/AAAI-LiuY.1833.pdf)[[github]](https://github.com/VDIGPKU/CBNet)
- RDSNet: A New Deep Architecture for Reciprocal Object Detection and Instance Segmentation, AAAI2020. [[paper]](https://arxiv.org/abs/1912.05070)[[github]](https://github.com/wangsr126/RDSNet)
- Training-Time-Friendly Network for Real-Time Object Detection, AAAI2020. [[paper]](https://arxiv.org/abs/1909.00700)[[github]](https://github.com/ZJULearning/ttfnet)
- Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution, NeurIPS 2019. [[paper]](https://arxiv.org/abs/1909.06720)[[github]](https://github.com/thangvubk/Cascade-RPN)
- Reasoning R-CNN: Unifying Adaptive Global Reasoning into Large-scale Object Detection, CVPR2019. [[paper]](http://openaccess.thecvf.com/content_CVPR_2019/papers/Xu_Reasoning-RCNN_Unifying_Adaptive_Global_Reasoning_Into_Large-Scale_Object_Detection_CVPR_2019_paper.pdf)[[github]](https://github.com/chanyn/Reasoning-RCNN)
- Learning RoI Transformer for Oriented Object Detection in Aerial Images, CVPR2019. [[paper]](https://arxiv.org/abs/1812.00155)[[github]](https://github.com/dingjiansw101/AerialDetection)
- SOLO: Segmenting Objects by Locations. [[paper]](https://arxiv.org/abs/1912.04488)[[github]](https://github.com/WXinlong/SOLO)
- SOLOv2: Dynamic, Faster and Stronger. [[paper]](https://arxiv.org/abs/2003.10152)[[github]](https://github.com/WXinlong/SOLO)
- Dense Peppoints: Representing Visual Objects with Dense Point Sets. [[paper]](https://arxiv.org/abs/1912.11473)[[github]](https://github.com/justimyhxu/Dense-RepPoints)
- IterDet: Iterative Scheme for Object Detection in Crowded Environments. [[paper]](https://arxiv.org/abs/2005.05708)[[github]](https://github.com/saic-vul/iterdet)
- Cross-Iteration Batch Normalization. [[paper]](https://arxiv.org/abs/2002.05712)[[github]](https://github.com/Howal/Cross-iterationBatchNorm)
- A Ranking-based, Balanced Loss Function Unifying Classification and Localisation in Object Detection, NeurIPS2020 [[paper]](https://arxiv.org/abs/2009.13592)[[github]](https://github.com/kemaloksuz/aLRPLoss)
- RelationNet++: Bridging Visual Representations for Object Detection via Transformer Decoder, NeurIPS2020 [[paper]](https://arxiv.org/abs/2010.15831)[[github]](https://github.com/microsoft/RelationNet2)
- Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection, CVPR2021[[paper]](https://arxiv.org/abs/2011.12885)[[github]](https://github.com/implus/GFocalV2)
- Instances as Queries, ICCV2021[[paper]](http://arxiv.org/abs/2105.01928)[[github]](https://github.com/hustvl/QueryInst)
- Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV2021[[paper]](https://arxiv.org/abs/2103.14030)[[github]](https://github.com/SwinTransformer/)
- Focal Transformer: Focal Self-attention for Local-Global Interactions in Vision Transformers, NeurIPS2021[[paper]](https://arxiv.org/abs/2107.00641)[[github]](https://github.com/microsoft/Focal-Transformer)
- End-to-End Semi-Supervised Object Detection with Soft Teacher, ICCV2021[[paper]](https://arxiv.org/abs/2106.09018)[[github]](https://github.com/microsoft/SoftTeacher)
- CBNetV2: A Novel Composite Backbone Network Architecture for Object Detection [[paper]](http://arxiv.org/abs/2107.00420)[[github]](https://github.com/VDIGPKU/CBNetV2)
- Instances as Queries, ICCV2021 [[paper]](https://openaccess.thecvf.com/content/ICCV2021/papers/Fang_Instances_As_Queries_ICCV_2021_paper.pdf)[[github]](https://github.com/hustvl/QueryInst)