OpenMMLab Detection Toolbox and Benchmark https://mmdetection.readthedocs.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
Wenwei Zhang 9fcd11e9a3
Add link of OpenMMLab Platform (#7006)
3 years ago
.circleci Support circleci (#6630) 3 years ago
.dev_scripts fix fp16 mask rcnn links (#6906) 3 years ago
.github Add link of OpenMMLab Platform (#7006) 3 years ago
configs Update retinanet_swin-t-p4-w7_fpn_1x_coco.py (#6973) 3 years ago
demo [Enhance] Upgrage visualization to custom colors of different classes. (#6716) 3 years ago
docker Bump to version v2.20.0 (#6902) 3 years ago
docs [Docs] Add Chinese version of customize_models (#6725) 3 years ago
mmdet Fix typo in formatting (#6956) 3 years ago
requirements switch back to pycocotools (#6838) 3 years ago
resources change qq groipe qrcode (#5787) 3 years ago
tests [Enhance] Upgrage visualization to custom colors of different classes. (#6716) 3 years ago
tools Disable cv2 multiprocessing by default (#6867) 3 years ago
.gitignore refactor documentations (#6774) 3 years ago
.pre-commit-config.yaml [Fix] Add Copyright to the files in the `mmdet` (#6809) 3 years ago
.readthedocs.yml [Feature]: support to output pdf and epub format doc (#5738) 3 years ago
CITATION.cff fix citation file (#6006) 3 years ago
LICENSE [Docs] Add header for files (#5900) 3 years ago
MANIFEST.in Support MIM (#5676) 3 years ago
README.md Add link of OpenMMLab Platform (#7006) 3 years ago
README_zh-CN.md Add link of OpenMMLab Platform (#7006) 3 years ago
model-index.yml [Feature] Support TOOD: Task-aligned One-stage Object Detection (ICCV 2021 Oral) (#6746) 3 years ago
pytest.ini Fix typos (#2768) 5 years ago
requirements.txt Fix typos (#2768) 5 years ago
setup.cfg [Feature] Support TOOD: Task-aligned One-stage Object Detection (ICCV 2021 Oral) (#6746) 3 years ago
setup.py Remove the unnecessary dependency pytest-runner and the tests_requires option from setup.py (#6998) 3 years ago

README.md

Introduction

English | 简体中文

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

The master branch works with PyTorch 1.5+.

Major features
  • Modular Design

    We decompose the detection framework into different components and one can easily construct a customized object detection framework by combining different modules.

  • Support of multiple frameworks out of box

    The toolbox directly supports popular and contemporary detection frameworks, e.g. Faster RCNN, Mask RCNN, RetinaNet, etc.

  • High efficiency

    All basic bbox and mask operations run on GPUs. The training speed is faster than or comparable to other codebases, including Detectron2, maskrcnn-benchmark and SimpleDet.

  • State of the art

    The toolbox stems from the codebase developed by the MMDet team, who won COCO Detection Challenge in 2018, and we keep pushing it forward.

Apart from MMDetection, we also released a library mmcv for computer vision research, which is heavily depended on by this toolbox.

License

This project is released under the Apache 2.0 license.

Changelog

2.20.0 was released in 27/12/2021:

  • Support TOOD: Task-aligned One-stage Object Detection (ICCV 2021 Oral)
  • Support resuming from the latest checkpoint automatically

Please refer to changelog.md for details and release history.

For compatibility changes between different versions of MMDetection, please refer to compatibility.md.

Benchmark and model zoo

Results and models are available in the model zoo.

Supported backbones:
  • ResNet (CVPR'2016)
  • ResNeXt (CVPR'2017)
  • VGG (ICLR'2015)
  • MobileNetV2 (CVPR'2018)
  • HRNet (CVPR'2019)
  • RegNet (CVPR'2020)
  • Res2Net (TPAMI'2020)
  • ResNeSt (ArXiv'2020)
  • Swin (CVPR'2021)
  • PVT (ICCV'2021)
  • PVTv2 (ArXiv'2021)
Supported methods:

Some other methods are also supported in projects using MMDetection.

Installation

Please refer to get_started.md for installation.

Getting Started

Please see get_started.md for the basic usage of MMDetection. We provide colab tutorial, and full guidance for quick run with existing dataset and with new dataset for beginners. There are also tutorials for finetuning models, adding new dataset, designing data pipeline, customizing models, customizing runtime settings and useful tools.

Please refer to FAQ for frequently asked questions.

Contributing

We appreciate all contributions to improve MMDetection. Ongoing projects can be found in out GitHub Projects. Welcome community users to participate in these projects. Please refer to CONTRIBUTING.md for the contributing guideline.

Acknowledgement

MMDetection is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors.

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@article{mmdetection,
  title   = {{MMDetection}: Open MMLab Detection Toolbox and Benchmark},
  author  = {Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and
             Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and
             Liu, Ziwei and Xu, Jiarui and Zhang, Zheng and Cheng, Dazhi and
             Zhu, Chenchen and Cheng, Tianheng and Zhao, Qijie and Li, Buyu and
             Lu, Xin and Zhu, Rui and Wu, Yue and Dai, Jifeng and Wang, Jingdong
             and Shi, Jianping and Ouyang, Wanli and Loy, Chen Change and Lin, Dahua},
  journal= {arXiv preprint arXiv:1906.07155},
  year={2019}
}

Projects in OpenMMLab

  • MMCV: OpenMMLab foundational library for computer vision.
  • MIM: MIM Installs OpenMMLab Packages.
  • MMClassification: OpenMMLab image classification toolbox and benchmark.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
  • MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
  • MMTracking: OpenMMLab video perception toolbox and benchmark.
  • MMPose: OpenMMLab pose estimation toolbox and benchmark.
  • MMEditing: OpenMMLab image and video editing toolbox.
  • MMOCR: A comprehensive toolbox for text detection, recognition and understanding.
  • MMGeneration: OpenMMLab image and video generative models toolbox.
  • MMFlow: OpenMMLab optical flow toolbox and benchmark.
  • MMFewShot: OpenMMLab fewshot learning toolbox and benchmark.
  • MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
  • MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
  • MMRazor: OpenMMLab Model Compression Toolbox and Benchmark.