OpenMMLab Detection Toolbox and Benchmark https://mmdetection.readthedocs.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
BigDong 11f3ca2ba6
[Refactor] move model.pretrained to model.backbone.init_cfg (#5370)
3 years ago
..
README.md change to https (#5328) 3 years ago
metafile.yml change to https (#5328) 3 years ago
yolov3_d53_320_273e_coco.py YOLOv3 - Continue on #1695 (#3083) 4 years ago
yolov3_d53_fp16_mstrain-608_273e_coco.py Update YOLOv3 models (#5229) 4 years ago
yolov3_d53_mstrain-416_273e_coco.py YOLOv3 - Continue on #1695 (#3083) 4 years ago
yolov3_d53_mstrain-608_273e_coco.py [Refactor] move model.pretrained to model.backbone.init_cfg (#5370) 3 years ago

README.md

YOLOv3

Introduction

@misc{redmon2018yolov3,
    title={YOLOv3: An Incremental Improvement},
    author={Joseph Redmon and Ali Farhadi},
    year={2018},
    eprint={1804.02767},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

Results and Models

Backbone Scale Lr schd Mem (GB) Inf time (fps) box AP Config Download
DarkNet-53 320 273e 2.7 63.9 27.9 config model | log
DarkNet-53 416 273e 3.8 61.2 30.9 config model | log
DarkNet-53 608 273e 7.4 48.1 33.7 config model | log

Mixed Precision Training

We also train YOLOv3 with mixed precision training.

Backbone Scale Lr schd Mem (GB) Inf time (fps) box AP Config Download
DarkNet-53 608 273e 4.7 48.1 33.8 config model | log

Credit

This implementation originates from the project of Haoyu Wu(@wuhy08) at Western Digital.