OpenMMLab Detection Toolbox and Benchmark
https://mmdetection.readthedocs.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
344 lines
11 KiB
344 lines
11 KiB
""" |
|
pytest tests/test_forward.py |
|
""" |
|
import copy |
|
from os.path import dirname, exists, join |
|
|
|
import numpy as np |
|
import pytest |
|
import torch |
|
|
|
|
|
def _get_config_directory(): |
|
""" Find the predefined detector config directory """ |
|
try: |
|
# Assume we are running in the source mmdetection repo |
|
repo_dpath = dirname(dirname(__file__)) |
|
except NameError: |
|
# For IPython development when this __file__ is not defined |
|
import mmdet |
|
repo_dpath = dirname(dirname(mmdet.__file__)) |
|
config_dpath = join(repo_dpath, 'configs') |
|
if not exists(config_dpath): |
|
raise Exception('Cannot find config path') |
|
return config_dpath |
|
|
|
|
|
def _get_config_module(fname): |
|
""" |
|
Load a configuration as a python module |
|
""" |
|
from mmcv import Config |
|
config_dpath = _get_config_directory() |
|
config_fpath = join(config_dpath, fname) |
|
config_mod = Config.fromfile(config_fpath) |
|
return config_mod |
|
|
|
|
|
def _get_detector_cfg(fname): |
|
""" |
|
Grab configs necessary to create a detector. These are deep copied to allow |
|
for safe modification of parameters without influencing other tests. |
|
""" |
|
import mmcv |
|
config = _get_config_module(fname) |
|
model = copy.deepcopy(config.model) |
|
train_cfg = mmcv.Config(copy.deepcopy(config.train_cfg)) |
|
test_cfg = mmcv.Config(copy.deepcopy(config.test_cfg)) |
|
return model, train_cfg, test_cfg |
|
|
|
|
|
def test_rpn_forward(): |
|
model, train_cfg, test_cfg = _get_detector_cfg( |
|
'rpn/rpn_r50_fpn_1x_coco.py') |
|
model['pretrained'] = None |
|
|
|
from mmdet.models import build_detector |
|
detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg) |
|
|
|
input_shape = (1, 3, 224, 224) |
|
mm_inputs = _demo_mm_inputs(input_shape) |
|
|
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
|
|
# Test forward train |
|
gt_bboxes = mm_inputs['gt_bboxes'] |
|
losses = detector.forward( |
|
imgs, img_metas, gt_bboxes=gt_bboxes, return_loss=True) |
|
assert isinstance(losses, dict) |
|
|
|
# Test forward test |
|
with torch.no_grad(): |
|
img_list = [g[None, :] for g in imgs] |
|
batch_results = [] |
|
for one_img, one_meta in zip(img_list, img_metas): |
|
result = detector.forward([one_img], [[one_meta]], |
|
return_loss=False) |
|
batch_results.append(result) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
'cfg_file', |
|
[ |
|
'retinanet/retinanet_r50_fpn_1x_coco.py', |
|
'guided_anchoring/ga_retinanet_r50_fpn_1x_coco.py', |
|
'ghm/retinanet_ghm_r50_fpn_1x_coco.py', |
|
'fcos/fcos_center_r50_caffe_fpn_gn-head_4x4_1x_coco.py', |
|
'foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py', |
|
# 'free_anchor/retinanet_free_anchor_r50_fpn_1x_coco.py', |
|
# 'atss/atss_r50_fpn_1x_coco.py', # not ready for topk |
|
'reppoints/reppoints_moment_r50_fpn_1x_coco.py' |
|
]) |
|
def test_single_stage_forward_gpu(cfg_file): |
|
if not torch.cuda.is_available(): |
|
import pytest |
|
pytest.skip('test requires GPU and torch+cuda') |
|
|
|
model, train_cfg, test_cfg = _get_detector_cfg(cfg_file) |
|
model['pretrained'] = None |
|
|
|
from mmdet.models import build_detector |
|
detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg) |
|
|
|
input_shape = (2, 3, 224, 224) |
|
mm_inputs = _demo_mm_inputs(input_shape) |
|
|
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
|
|
detector = detector.cuda() |
|
imgs = imgs.cuda() |
|
# Test forward train |
|
gt_bboxes = [b.cuda() for b in mm_inputs['gt_bboxes']] |
|
gt_labels = [g.cuda() for g in mm_inputs['gt_labels']] |
|
losses = detector.forward( |
|
imgs, |
|
img_metas, |
|
gt_bboxes=gt_bboxes, |
|
gt_labels=gt_labels, |
|
return_loss=True) |
|
assert isinstance(losses, dict) |
|
|
|
# Test forward test |
|
with torch.no_grad(): |
|
img_list = [g[None, :] for g in imgs] |
|
batch_results = [] |
|
for one_img, one_meta in zip(img_list, img_metas): |
|
result = detector.forward([one_img], [[one_meta]], |
|
return_loss=False) |
|
batch_results.append(result) |
|
|
|
|
|
def test_faster_rcnn_ohem_forward(): |
|
model, train_cfg, test_cfg = _get_detector_cfg( |
|
'faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py') |
|
model['pretrained'] = None |
|
|
|
from mmdet.models import build_detector |
|
detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg) |
|
|
|
input_shape = (1, 3, 256, 256) |
|
|
|
# Test forward train with a non-empty truth batch |
|
mm_inputs = _demo_mm_inputs(input_shape, num_items=[10]) |
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
gt_bboxes = mm_inputs['gt_bboxes'] |
|
gt_labels = mm_inputs['gt_labels'] |
|
losses = detector.forward( |
|
imgs, |
|
img_metas, |
|
gt_bboxes=gt_bboxes, |
|
gt_labels=gt_labels, |
|
return_loss=True) |
|
assert isinstance(losses, dict) |
|
loss, _ = detector._parse_losses(losses) |
|
assert float(loss.item()) > 0 |
|
|
|
# Test forward train with an empty truth batch |
|
mm_inputs = _demo_mm_inputs(input_shape, num_items=[0]) |
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
gt_bboxes = mm_inputs['gt_bboxes'] |
|
gt_labels = mm_inputs['gt_labels'] |
|
losses = detector.forward( |
|
imgs, |
|
img_metas, |
|
gt_bboxes=gt_bboxes, |
|
gt_labels=gt_labels, |
|
return_loss=True) |
|
assert isinstance(losses, dict) |
|
loss, _ = detector._parse_losses(losses) |
|
assert float(loss.item()) > 0 |
|
|
|
|
|
# HTC is not ready yet |
|
@pytest.mark.parametrize('cfg_file', [ |
|
'cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py', |
|
'mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py', |
|
'grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py', |
|
'ms_rcnn/ms_rcnn_r50_fpn_1x_coco.py' |
|
]) |
|
def test_two_stage_forward(cfg_file): |
|
model, train_cfg, test_cfg = _get_detector_cfg(cfg_file) |
|
model['pretrained'] = None |
|
|
|
from mmdet.models import build_detector |
|
detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg) |
|
|
|
input_shape = (1, 3, 256, 256) |
|
|
|
# Test forward train with a non-empty truth batch |
|
mm_inputs = _demo_mm_inputs(input_shape, num_items=[10]) |
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
gt_bboxes = mm_inputs['gt_bboxes'] |
|
gt_labels = mm_inputs['gt_labels'] |
|
gt_masks = mm_inputs['gt_masks'] |
|
losses = detector.forward( |
|
imgs, |
|
img_metas, |
|
gt_bboxes=gt_bboxes, |
|
gt_labels=gt_labels, |
|
gt_masks=gt_masks, |
|
return_loss=True) |
|
assert isinstance(losses, dict) |
|
loss, _ = detector._parse_losses(losses) |
|
loss.requires_grad_(True) |
|
assert float(loss.item()) > 0 |
|
loss.backward() |
|
|
|
# Test forward train with an empty truth batch |
|
mm_inputs = _demo_mm_inputs(input_shape, num_items=[0]) |
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
gt_bboxes = mm_inputs['gt_bboxes'] |
|
gt_labels = mm_inputs['gt_labels'] |
|
gt_masks = mm_inputs['gt_masks'] |
|
losses = detector.forward( |
|
imgs, |
|
img_metas, |
|
gt_bboxes=gt_bboxes, |
|
gt_labels=gt_labels, |
|
gt_masks=gt_masks, |
|
return_loss=True) |
|
assert isinstance(losses, dict) |
|
loss, _ = detector._parse_losses(losses) |
|
loss.requires_grad_(True) |
|
assert float(loss.item()) > 0 |
|
loss.backward() |
|
|
|
# Test forward test |
|
with torch.no_grad(): |
|
img_list = [g[None, :] for g in imgs] |
|
batch_results = [] |
|
for one_img, one_meta in zip(img_list, img_metas): |
|
result = detector.forward([one_img], [[one_meta]], |
|
return_loss=False) |
|
batch_results.append(result) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
'cfg_file', ['ghm/retinanet_ghm_r50_fpn_1x_coco.py', 'ssd/ssd300_coco.py']) |
|
def test_single_stage_forward_cpu(cfg_file): |
|
model, train_cfg, test_cfg = _get_detector_cfg(cfg_file) |
|
model['pretrained'] = None |
|
|
|
from mmdet.models import build_detector |
|
detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg) |
|
|
|
input_shape = (1, 3, 300, 300) |
|
mm_inputs = _demo_mm_inputs(input_shape) |
|
|
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
|
|
# Test forward train |
|
gt_bboxes = mm_inputs['gt_bboxes'] |
|
gt_labels = mm_inputs['gt_labels'] |
|
losses = detector.forward( |
|
imgs, |
|
img_metas, |
|
gt_bboxes=gt_bboxes, |
|
gt_labels=gt_labels, |
|
return_loss=True) |
|
assert isinstance(losses, dict) |
|
|
|
# Test forward test |
|
with torch.no_grad(): |
|
img_list = [g[None, :] for g in imgs] |
|
batch_results = [] |
|
for one_img, one_meta in zip(img_list, img_metas): |
|
result = detector.forward([one_img], [[one_meta]], |
|
return_loss=False) |
|
batch_results.append(result) |
|
|
|
|
|
def _demo_mm_inputs(input_shape=(1, 3, 300, 300), |
|
num_items=None, num_classes=10): # yapf: disable |
|
""" |
|
Create a superset of inputs needed to run test or train batches. |
|
|
|
Args: |
|
input_shape (tuple): |
|
input batch dimensions |
|
|
|
num_items (None | List[int]): |
|
specifies the number of boxes in each batch item |
|
|
|
num_classes (int): |
|
number of different labels a box might have |
|
""" |
|
from mmdet.core import BitmapMasks |
|
|
|
(N, C, H, W) = input_shape |
|
|
|
rng = np.random.RandomState(0) |
|
|
|
imgs = rng.rand(*input_shape) |
|
|
|
img_metas = [{ |
|
'img_shape': (H, W, C), |
|
'ori_shape': (H, W, C), |
|
'pad_shape': (H, W, C), |
|
'filename': '<demo>.png', |
|
'scale_factor': 1.0, |
|
'flip': False, |
|
} for _ in range(N)] |
|
|
|
gt_bboxes = [] |
|
gt_labels = [] |
|
gt_masks = [] |
|
|
|
for batch_idx in range(N): |
|
if num_items is None: |
|
num_boxes = rng.randint(1, 10) |
|
else: |
|
num_boxes = num_items[batch_idx] |
|
|
|
cx, cy, bw, bh = rng.rand(num_boxes, 4).T |
|
|
|
tl_x = ((cx * W) - (W * bw / 2)).clip(0, W) |
|
tl_y = ((cy * H) - (H * bh / 2)).clip(0, H) |
|
br_x = ((cx * W) + (W * bw / 2)).clip(0, W) |
|
br_y = ((cy * H) + (H * bh / 2)).clip(0, H) |
|
|
|
boxes = np.vstack([tl_x, tl_y, br_x, br_y]).T |
|
class_idxs = rng.randint(1, num_classes, size=num_boxes) |
|
|
|
gt_bboxes.append(torch.FloatTensor(boxes)) |
|
gt_labels.append(torch.LongTensor(class_idxs)) |
|
|
|
mask = np.random.randint(0, 2, (len(boxes), H, W), dtype=np.uint8) |
|
gt_masks.append(BitmapMasks(mask, H, W)) |
|
|
|
mm_inputs = { |
|
'imgs': torch.FloatTensor(imgs).requires_grad_(True), |
|
'img_metas': img_metas, |
|
'gt_bboxes': gt_bboxes, |
|
'gt_labels': gt_labels, |
|
'gt_bboxes_ignore': None, |
|
'gt_masks': gt_masks, |
|
} |
|
return mm_inputs
|
|
|