OpenMMLab Detection Toolbox and Benchmark https://mmdetection.readthedocs.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
Jiangmiao Pang b15a2b3b21
add bibtex for Libra R-CNN's journal version (#5937)
3 years ago
..
README.md add bibtex for Libra R-CNN's journal version (#5937) 3 years ago
libra_fast_rcnn_r50_fpn_1x_coco.py Move train_cfg/test_cfg into model (#4347) 4 years ago
libra_faster_rcnn_r50_fpn_1x_coco.py Move train_cfg/test_cfg into model (#4347) 4 years ago
libra_faster_rcnn_r101_fpn_1x_coco.py [Refactor] move model.pretrained to model.backbone.init_cfg (#5370) 3 years ago
libra_faster_rcnn_x101_64x4d_fpn_1x_coco.py [Refactor] move model.pretrained to model.backbone.init_cfg (#5370) 3 years ago
libra_retinanet_r50_fpn_1x_coco.py Add upsample_cfg support in FPN (#2787) 5 years ago
metafile.yml [Enhancement] Modify metafiles (#5496) 3 years ago

README.md

Libra R-CNN: Towards Balanced Learning for Object Detection

Introduction

We provide config files to reproduce the results in the CVPR 2019 paper Libra R-CNN.

The extended version of Libra R-CNN is accpeted by IJCV.

@inproceedings{pang2019libra,
  title={Libra R-CNN: Towards Balanced Learning for Object Detection},
  author={Pang, Jiangmiao and Chen, Kai and Shi, Jianping and Feng, Huajun and Ouyang, Wanli and Dahua Lin},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2019}
}

@article{pang2021towards,
  title={Towards Balanced Learning for Instance Recognition},
  author={Pang, Jiangmiao and Chen, Kai and Li, Qi and Xu, Zhihai and Feng, Huajun and Shi, Jianping and Ouyang, Wanli and Lin, Dahua},
  journal={International Journal of Computer Vision},
  volume={129},
  number={5},
  pages={1376--1393},
  year={2021},
  publisher={Springer}
}

Results and models

The results on COCO 2017val are shown in the below table. (results on test-dev are usually slightly higher than val)

Architecture Backbone Style Lr schd Mem (GB) Inf time (fps) box AP Config Download
Faster R-CNN R-50-FPN pytorch 1x 4.6 19.0 38.3 config model | log
Fast R-CNN R-50-FPN pytorch 1x
Faster R-CNN R-101-FPN pytorch 1x 6.5 14.4 40.1 config model | log
Faster R-CNN X-101-64x4d-FPN pytorch 1x 10.8 8.5 42.7 config model | log
RetinaNet R-50-FPN pytorch 1x 4.2 17.7 37.6 config model | log