OpenMMLab Detection Toolbox and Benchmark https://mmdetection.readthedocs.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

193 lines
6.0 KiB

import argparse
import re
import tempfile
from collections import OrderedDict
import torch
from mmcv import Config
def is_head(key):
valid_head_list = [
'bbox_head', 'mask_head', 'semantic_head', 'grid_head', 'mask_iou_head'
]
return any(key.startswith(h) for h in valid_head_list)
def parse_config(config_strings):
temp_file = tempfile.NamedTemporaryFile()
config_path = f'{temp_file.name}.py'
with open(config_path, 'w') as f:
f.write(config_strings)
config = Config.fromfile(config_path)
is_two_stage = True
is_ssd = False
is_retina = False
reg_cls_agnostic = False
if 'rpn_head' not in config.model:
is_two_stage = False
# check whether it is SSD
if config.model.bbox_head.type == 'SSDHead':
is_ssd = True
elif config.model.bbox_head.type == 'RetinaHead':
is_retina = True
elif isinstance(config.model['bbox_head'], list):
reg_cls_agnostic = True
elif 'reg_class_agnostic' in config.model.bbox_head:
reg_cls_agnostic = config.model.bbox_head \
.reg_class_agnostic
temp_file.close()
return is_two_stage, is_ssd, is_retina, reg_cls_agnostic
def reorder_cls_channel(val, num_classes=81):
# bias
if val.dim() == 1:
new_val = torch.cat((val[1:], val[:1]), dim=0)
# weight
else:
out_channels, in_channels = val.shape[:2]
# conv_cls for softmax output
if out_channels != num_classes and out_channels % num_classes == 0:
new_val = val.reshape(-1, num_classes, in_channels, *val.shape[2:])
new_val = torch.cat((new_val[:, 1:], new_val[:, :1]), dim=1)
new_val = new_val.reshape(val.size())
# fc_cls
elif out_channels == num_classes:
new_val = torch.cat((val[1:], val[:1]), dim=0)
# agnostic | retina_cls
else:
new_val = val
return new_val
def truncate_cls_channel(val, num_classes=81):
# bias
if val.dim() == 1:
if val.size(0) % num_classes == 0:
new_val = val[:num_classes - 1]
else:
new_val = val
# weight
else:
out_channels, in_channels = val.shape[:2]
# conv_logits
if out_channels % num_classes == 0:
new_val = val.reshape(num_classes, in_channels, *val.shape[2:])[1:]
new_val = new_val.reshape(-1, *val.shape[1:])
# agnostic
else:
new_val = val
return new_val
def truncate_reg_channel(val, num_classes=81):
# bias
if val.dim() == 1:
# fc_reg
if val.size(0) % num_classes == 0:
new_val = val.reshape(num_classes, -1)[:num_classes - 1]
new_val = new_val.reshape(-1)
# agnostic
else:
new_val = val
# weight
else:
out_channels, in_channels = val.shape[:2]
# fc_reg
if out_channels % num_classes == 0:
new_val = val.reshape(num_classes, -1, in_channels,
*val.shape[2:])[1:]
new_val = new_val.reshape(-1, *val.shape[1:])
# agnostic
else:
new_val = val
return new_val
def convert(in_file, out_file, num_classes):
"""Convert keys in checkpoints.
There can be some breaking changes during the development of mmdetection,
and this tool is used for upgrading checkpoints trained with old versions
to the latest one.
"""
checkpoint = torch.load(in_file)
in_state_dict = checkpoint.pop('state_dict')
out_state_dict = OrderedDict()
meta_info = checkpoint['meta']
is_two_stage, is_ssd, is_retina, reg_cls_agnostic = parse_config(
meta_info['config'])
if meta_info['mmdet_version'] <= '0.5.3' and is_retina:
upgrade_retina = True
else:
upgrade_retina = False
for key, val in in_state_dict.items():
new_key = key
new_val = val
if is_two_stage and is_head(key):
new_key = 'roi_head.{}'.format(key)
# classification
m = re.search(
r'(conv_cls|retina_cls|fc_cls|fcos_cls|'
r'fovea_cls).(weight|bias)', new_key)
if m is not None:
print(f'reorder cls channels of {new_key}')
new_val = reorder_cls_channel(val, num_classes)
# regression
m = re.search(r'(fc_reg).(weight|bias)', new_key)
if m is not None and not reg_cls_agnostic:
print(f'truncate regression channels of {new_key}')
new_val = truncate_reg_channel(val, num_classes)
# mask head
m = re.search(r'(conv_logits).(weight|bias)', new_key)
if m is not None:
print(f'truncate mask prediction channels of {new_key}')
new_val = truncate_cls_channel(val, num_classes)
m = re.search(r'(cls_convs|reg_convs).\d.(weight|bias)', key)
# Legacy issues in RetinaNet since V1.x
# Use ConvModule instead of nn.Conv2d in RetinaNet
# cls_convs.0.weight -> cls_convs.0.conv.weight
if m is not None and upgrade_retina:
param = m.groups()[1]
new_key = key.replace(param, f'conv.{param}')
out_state_dict[new_key] = val
print(f'rename the name of {key} to {new_key}')
continue
m = re.search(r'(cls_convs).\d.(weight|bias)', key)
if m is not None and is_ssd:
print(f'reorder cls channels of {new_key}')
new_val = reorder_cls_channel(val, num_classes)
out_state_dict[new_key] = new_val
checkpoint['state_dict'] = out_state_dict
torch.save(checkpoint, out_file)
def main():
parser = argparse.ArgumentParser(description='Upgrade model version')
parser.add_argument('in_file', help='input checkpoint file')
parser.add_argument('out_file', help='output checkpoint file')
parser.add_argument(
'--num-classes',
type=int,
default=81,
help='number of classes of the original model')
args = parser.parse_args()
convert(args.in_file, args.out_file, args.num_classes)
if __name__ == '__main__':
main()