OpenMMLab Detection Toolbox and Benchmark
https://mmdetection.readthedocs.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
230 lines
8.0 KiB
230 lines
8.0 KiB
import argparse |
|
import os.path as osp |
|
import warnings |
|
|
|
import numpy as np |
|
import onnx |
|
import onnxruntime as rt |
|
import torch |
|
|
|
from mmdet.core import (build_model_from_cfg, generate_inputs_and_wrap_model, |
|
preprocess_example_input) |
|
|
|
|
|
def pytorch2onnx(config_path, |
|
checkpoint_path, |
|
input_img, |
|
input_shape, |
|
opset_version=11, |
|
show=False, |
|
output_file='tmp.onnx', |
|
verify=False, |
|
normalize_cfg=None, |
|
dataset='coco', |
|
test_img=None, |
|
do_simplify=False): |
|
|
|
input_config = { |
|
'input_shape': input_shape, |
|
'input_path': input_img, |
|
'normalize_cfg': normalize_cfg |
|
} |
|
|
|
# prepare original model and meta for verifying the onnx model |
|
orig_model = build_model_from_cfg(config_path, checkpoint_path) |
|
one_img, one_meta = preprocess_example_input(input_config) |
|
model, tensor_data = generate_inputs_and_wrap_model( |
|
config_path, checkpoint_path, input_config) |
|
output_names = ['boxes'] |
|
if model.with_bbox: |
|
output_names.append('labels') |
|
if model.with_mask: |
|
output_names.append('masks') |
|
|
|
torch.onnx.export( |
|
model, |
|
tensor_data, |
|
output_file, |
|
input_names=['input'], |
|
output_names=output_names, |
|
export_params=True, |
|
keep_initializers_as_inputs=True, |
|
do_constant_folding=True, |
|
verbose=show, |
|
opset_version=opset_version) |
|
|
|
model.forward = orig_model.forward |
|
|
|
# simplify onnx model |
|
if do_simplify: |
|
from mmdet import digit_version |
|
import mmcv |
|
|
|
min_required_version = '1.2.5' |
|
assert digit_version(mmcv.__version__) >= digit_version( |
|
min_required_version |
|
), f'Requires to install mmcv>={min_required_version}' |
|
from mmcv.onnx.simplify import simplify |
|
|
|
input_dic = {'input': one_img.detach().cpu().numpy()} |
|
_ = simplify(output_file, [input_dic], output_file) |
|
print(f'Successfully exported ONNX model: {output_file}') |
|
if verify: |
|
from mmdet.core import get_classes, bbox2result |
|
from mmdet.apis import show_result_pyplot |
|
|
|
ort_custom_op_path = '' |
|
try: |
|
from mmcv.ops import get_onnxruntime_op_path |
|
ort_custom_op_path = get_onnxruntime_op_path() |
|
except (ImportError, ModuleNotFoundError): |
|
warnings.warn('If input model has custom op from mmcv, \ |
|
you may have to build mmcv with ONNXRuntime from source.') |
|
model.CLASSES = get_classes(dataset) |
|
num_classes = len(model.CLASSES) |
|
# check by onnx |
|
onnx_model = onnx.load(output_file) |
|
onnx.checker.check_model(onnx_model) |
|
if test_img is not None: |
|
input_config['input_path'] = test_img |
|
one_img, one_meta = preprocess_example_input(input_config) |
|
tensor_data = [one_img] |
|
# check the numerical value |
|
# get pytorch output |
|
pytorch_results = model(tensor_data, [[one_meta]], return_loss=False) |
|
pytorch_results = pytorch_results[0] |
|
# get onnx output |
|
input_all = [node.name for node in onnx_model.graph.input] |
|
input_initializer = [ |
|
node.name for node in onnx_model.graph.initializer |
|
] |
|
net_feed_input = list(set(input_all) - set(input_initializer)) |
|
assert (len(net_feed_input) == 1) |
|
session_options = rt.SessionOptions() |
|
# register custom op for onnxruntime |
|
if osp.exists(ort_custom_op_path): |
|
session_options.register_custom_ops_library(ort_custom_op_path) |
|
sess = rt.InferenceSession(output_file, session_options) |
|
onnx_outputs = sess.run(None, |
|
{net_feed_input[0]: one_img.detach().numpy()}) |
|
output_names = [_.name for _ in sess.get_outputs()] |
|
output_shapes = [_.shape for _ in onnx_outputs] |
|
print(f'onnxruntime output names: {output_names}, \ |
|
output shapes: {output_shapes}') |
|
nrof_out = len(onnx_outputs) |
|
assert nrof_out > 0, 'Must have output' |
|
with_mask = nrof_out == 3 |
|
if nrof_out == 1: |
|
onnx_results = onnx_outputs[0] |
|
else: |
|
det_bboxes, det_labels = onnx_outputs[:2] |
|
onnx_results = bbox2result(det_bboxes, det_labels, num_classes) |
|
if with_mask: |
|
segm_results = onnx_outputs[2].squeeze(1) |
|
cls_segms = [[] for _ in range(num_classes)] |
|
for i in range(det_bboxes.shape[0]): |
|
cls_segms[det_labels[i]].append(segm_results[i]) |
|
onnx_results = (onnx_results, cls_segms) |
|
# visualize predictions |
|
|
|
if show: |
|
show_result_pyplot( |
|
model, one_meta['show_img'], pytorch_results, title='Pytorch') |
|
show_result_pyplot( |
|
model, one_meta['show_img'], onnx_results, title='ONNX') |
|
|
|
# compare a part of result |
|
|
|
if with_mask: |
|
compare_pairs = list(zip(onnx_results, pytorch_results)) |
|
else: |
|
compare_pairs = [(onnx_results, pytorch_results)] |
|
for onnx_res, pytorch_res in compare_pairs: |
|
for o_res, p_res in zip(onnx_res, pytorch_res): |
|
np.testing.assert_allclose( |
|
o_res, |
|
p_res, |
|
rtol=1e-03, |
|
atol=1e-05, |
|
) |
|
print('The numerical values are the same between Pytorch and ONNX') |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description='Convert MMDetection models to ONNX') |
|
parser.add_argument('config', help='test config file path') |
|
parser.add_argument('checkpoint', help='checkpoint file') |
|
parser.add_argument('--input-img', type=str, help='Images for input') |
|
parser.add_argument('--show', action='store_true', help='show onnx graph') |
|
parser.add_argument('--output-file', type=str, default='tmp.onnx') |
|
parser.add_argument('--opset-version', type=int, default=11) |
|
parser.add_argument( |
|
'--test-img', type=str, default=None, help='Images for test') |
|
parser.add_argument( |
|
'--dataset', type=str, default='coco', help='Dataset name') |
|
parser.add_argument( |
|
'--verify', |
|
action='store_true', |
|
help='verify the onnx model output against pytorch output') |
|
parser.add_argument( |
|
'--simplify', |
|
action='store_true', |
|
help='Whether to simplify onnx model.') |
|
parser.add_argument( |
|
'--shape', |
|
type=int, |
|
nargs='+', |
|
default=[800, 1216], |
|
help='input image size') |
|
parser.add_argument( |
|
'--mean', |
|
type=float, |
|
nargs='+', |
|
default=[123.675, 116.28, 103.53], |
|
help='mean value used for preprocess input data') |
|
parser.add_argument( |
|
'--std', |
|
type=float, |
|
nargs='+', |
|
default=[58.395, 57.12, 57.375], |
|
help='variance value used for preprocess input data') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
if __name__ == '__main__': |
|
args = parse_args() |
|
|
|
assert args.opset_version == 11, 'MMDet only support opset 11 now' |
|
|
|
if not args.input_img: |
|
args.input_img = osp.join( |
|
osp.dirname(__file__), '../tests/data/color.jpg') |
|
|
|
if len(args.shape) == 1: |
|
input_shape = (1, 3, args.shape[0], args.shape[0]) |
|
elif len(args.shape) == 2: |
|
input_shape = (1, 3) + tuple(args.shape) |
|
else: |
|
raise ValueError('invalid input shape') |
|
|
|
assert len(args.mean) == 3 |
|
assert len(args.std) == 3 |
|
|
|
normalize_cfg = {'mean': args.mean, 'std': args.std} |
|
|
|
# convert model to onnx file |
|
pytorch2onnx( |
|
args.config, |
|
args.checkpoint, |
|
args.input_img, |
|
input_shape, |
|
opset_version=args.opset_version, |
|
show=args.show, |
|
output_file=args.output_file, |
|
verify=args.verify, |
|
normalize_cfg=normalize_cfg, |
|
dataset=args.dataset, |
|
test_img=args.test_img, |
|
do_simplify=args.simplify)
|
|
|