OpenMMLab Detection Toolbox and Benchmark https://mmdetection.readthedocs.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

98 lines
4.2 KiB

import numpy as np
import pytest
import torch
from mmdet.utils import AvoidOOM
from mmdet.utils.memory import cast_tensor_type
def test_avoidoom():
tensor = torch.from_numpy(np.random.random((20, 20)))
if torch.cuda.is_available():
tensor = tensor.cuda()
# get default result
default_result = torch.mm(tensor, tensor.transpose(1, 0))
# when not occurred OOM error
AvoidCudaOOM = AvoidOOM()
result = AvoidCudaOOM.retry_if_cuda_oom(torch.mm)(tensor,
tensor.transpose(
1, 0))
assert default_result.device == result.device and \
default_result.dtype == result.dtype and \
torch.equal(default_result, result)
# calculate with fp16 and convert back to source type
AvoidCudaOOM = AvoidOOM(test=True)
result = AvoidCudaOOM.retry_if_cuda_oom(torch.mm)(tensor,
tensor.transpose(
1, 0))
assert default_result.device == result.device and \
default_result.dtype == result.dtype and \
torch.allclose(default_result, result, 1e-3)
# calculate on cpu and convert back to source device
AvoidCudaOOM = AvoidOOM(test=True)
result = AvoidCudaOOM.retry_if_cuda_oom(torch.mm)(tensor,
tensor.transpose(
1, 0))
assert result.dtype == default_result.dtype and \
result.device == default_result.device and \
torch.allclose(default_result, result)
# do not calculate on cpu and the outputs will be same as input
AvoidCudaOOM = AvoidOOM(test=True, to_cpu=False)
result = AvoidCudaOOM.retry_if_cuda_oom(torch.mm)(tensor,
tensor.transpose(
1, 0))
assert result.dtype == default_result.dtype and \
result.device == default_result.device
else:
default_result = torch.mm(tensor, tensor.transpose(1, 0))
AvoidCudaOOM = AvoidOOM()
result = AvoidCudaOOM.retry_if_cuda_oom(torch.mm)(tensor,
tensor.transpose(
1, 0))
assert default_result.device == result.device and \
default_result.dtype == result.dtype and \
torch.equal(default_result, result)
def test_cast_tensor_type():
inputs = torch.rand(10)
if torch.cuda.is_available():
inputs = inputs.cuda()
with pytest.raises(AssertionError):
cast_tensor_type(inputs, src_type=None, dst_type=None)
# input is a float
out = cast_tensor_type(10., dst_type=torch.half)
assert out == 10. and isinstance(out, float)
# convert Tensor to fp16 and re-convert to fp32
fp16_out = cast_tensor_type(inputs, dst_type=torch.half)
assert fp16_out.dtype == torch.half
fp32_out = cast_tensor_type(fp16_out, dst_type=torch.float32)
assert fp32_out.dtype == torch.float32
# input is a list
list_input = [inputs, inputs]
list_outs = cast_tensor_type(list_input, dst_type=torch.half)
assert len(list_outs) == len(list_input) and \
isinstance(list_outs, list)
for out in list_outs:
assert out.dtype == torch.half
# input is a dict
dict_input = {'test1': inputs, 'test2': inputs}
dict_outs = cast_tensor_type(dict_input, dst_type=torch.half)
assert len(dict_outs) == len(dict_input) and \
isinstance(dict_outs, dict)
# convert the input tensor to CPU and re-convert to GPU
if torch.cuda.is_available():
cpu_device = torch.empty(0).device
gpu_device = inputs.device
cpu_out = cast_tensor_type(inputs, dst_type=cpu_device)
assert cpu_out.device == cpu_device
gpu_out = cast_tensor_type(inputs, dst_type=gpu_device)
assert gpu_out.device == gpu_device