# model settings input_size = 300 model = dict( type='SingleStageDetector', backbone=dict( type='SSDVGG', depth=16, with_last_pool=False, ceil_mode=True, out_indices=(3, 4), out_feature_indices=(22, 34), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://vgg16_caffe')), neck=dict( type='SSDNeck', in_channels=(512, 1024), out_channels=(512, 1024, 512, 256, 256, 256), level_strides=(2, 2, 1, 1), level_paddings=(1, 1, 0, 0), l2_norm_scale=20), bbox_head=dict( type='AscendSSDHead', in_channels=(512, 1024, 512, 256, 256, 256), num_classes=80, anchor_generator=dict( type='SSDAnchorGenerator', scale_major=False, input_size=input_size, basesize_ratio_range=(0.15, 0.9), strides=[8, 16, 32, 64, 100, 300], ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2])), # model training and testing settings train_cfg=dict( assigner=dict( type='AscendMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0., ignore_iof_thr=-1, gt_max_assign_all=False), smoothl1_beta=1., allowed_border=-1, pos_weight=-1, neg_pos_ratio=3, debug=False), test_cfg=dict( nms_pre=1000, nms=dict(type='nms', iou_threshold=0.45), min_bbox_size=0, score_thr=0.02, max_per_img=200)) cudnn_benchmark = True