[Doc]: introduce 3.x in 2.x readme (#8677)

* introduce 3.x in 2.x readme

* introduce 3.x in 2.x readme

* update
pull/8722/head
RangiLyu 3 years ago committed by GitHub
parent 3b72b12fe9
commit df28da9892
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 14
      README.md
  2. 11
      README_zh-CN.md

@ -75,6 +75,8 @@ Apart from MMDetection, we also released a library [mmcv](https://github.com/ope
## What's New ## What's New
### 💎 Stable version
**2.25.0** was released in 1/6/2022: **2.25.0** was released in 1/6/2022:
- Support dedicated `MMDetWandbHook` hook - Support dedicated `MMDetWandbHook` hook
@ -86,6 +88,18 @@ Please refer to [changelog.md](docs/en/changelog.md) for details and release his
For compatibility changes between different versions of MMDetection, please refer to [compatibility.md](docs/en/compatibility.md). For compatibility changes between different versions of MMDetection, please refer to [compatibility.md](docs/en/compatibility.md).
### 🌟 Preview of 3.x version
A brand new version of **MMDetection v3.0.0rc0** was released in 31/8/2022:
- Unifies interfaces of all components based on [MMEngine](https://github.com/open-mmlab/mmengine).
- Faster training and testing speed with complete support of mixed precision training.
- Refactored and more flexible [architecture](https://mmdetection.readthedocs.io/en/v3.0.0rc0/overview.html).
- Provides more strong baselines and a general semi-supervised object detection framework. See [tutorial of semi-supervised detection](https://mmdetection.readthedocs.io/en/v3.0.0rc0/user_guides/semi_det.html).
- Allows any kind of single-stage model as an RPN in a two-stage model. See [tutorial](https://mmdetection.readthedocs.io/en/v3.0.0rc0/user_guides/single_stage_as_rpn.html).
Find more new features in [3.x branch](https://github.com/open-mmlab/mmdetection/tree/3.x). Issues and PRs are welcome!
## Installation ## Installation
Please refer to [Installation](docs/en/get_started.md/#Installation) for installation instructions. Please refer to [Installation](docs/en/get_started.md/#Installation) for installation instructions.

@ -74,6 +74,8 @@ MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。它是 [Ope
## 最新进展 ## 最新进展
### 💎 稳定版本
最新的 **2.25.0** 版本已经在 2022.06.01 发布: 最新的 **2.25.0** 版本已经在 2022.06.01 发布:
- 支持功能更丰富的 `MMDetWandbHook` - 支持功能更丰富的 `MMDetWandbHook`
@ -85,6 +87,15 @@ MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。它是 [Ope
如果想了解 MMDetection 不同版本之间的兼容性, 请参考[兼容性说明文档](docs/zh_cn/compatibility.md)。 如果想了解 MMDetection 不同版本之间的兼容性, 请参考[兼容性说明文档](docs/zh_cn/compatibility.md)。
### 🌟 3.x 预览版本
全新的 **v3.0.0rc0** 版本已经在 2022.8.31 发布:
- 基于 [MMEngine](https://github.com/open-mmlab/mmengine) 统一了各组件接口。
- 全面支持混合精度,训练测试速度更快。
- 提供了更强的基线模型,并支持了通用的半监督目标检测框架,详见[半监督目标检测教程](https://mmdetection.readthedocs.io/zh_CN/v3.0.0rc0/user_guides/semi_det.html)。
- 支持使用任意单阶段检测器作为二阶段模型的 RPN,详见[教程](https://mmdetection.readthedocs.io/en/v3.0.0rc0/user_guides/single_stage_as_rpn.html)。
## 安装 ## 安装
请参考[安装指令](docs/zh_cn/get_started.md/#Installation)进行安装。 请参考[安装指令](docs/zh_cn/get_started.md/#Installation)进行安装。

Loading…
Cancel
Save