Update test robustness (#4000)

* Use mmdet.apis

* Add show_dir and show_score_thr args

* pre-commit

* Save each corruption in separate folder

* Save each corruption in separate folder
pull/4023/head
David de la Iglesia Castro 5 years ago committed by GitHub
parent 0bb9b96f1b
commit d303892394
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 116
      tools/test_robustness.py

@ -2,12 +2,9 @@ import argparse
import copy
import os
import os.path as osp
import shutil
import tempfile
import mmcv
import torch
import torch.distributed as dist
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint,
wrap_fp16_model)
@ -16,8 +13,8 @@ from pycocotools.cocoeval import COCOeval
from robustness_eval import get_results
from mmdet import datasets
from mmdet.apis import set_random_seed
from mmdet.core import encode_mask_results, eval_map
from mmdet.apis import multi_gpu_test, set_random_seed, single_gpu_test
from mmdet.core import eval_map
from mmdet.datasets import build_dataloader, build_dataset
from mmdet.models import build_detector
@ -91,99 +88,6 @@ def voc_eval_with_return(result_file,
return mean_ap, eval_results
def single_gpu_test(model, data_loader, show=False):
model.eval()
results = []
dataset = data_loader.dataset
prog_bar = mmcv.ProgressBar(len(dataset))
for i, data in enumerate(data_loader):
with torch.no_grad():
result = model(return_loss=False, rescale=not show, **data)
if show:
model.module.show_result(data, result, dataset.img_norm_cfg)
# encode mask results
if isinstance(result[0], tuple):
result = [(bbox_results, encode_mask_results(mask_results))
for bbox_results, mask_results in result]
results.extend(result)
batch_size = len(result)
for _ in range(batch_size):
prog_bar.update()
return results
def multi_gpu_test(model, data_loader, tmpdir=None):
model.eval()
results = []
dataset = data_loader.dataset
rank, world_size = get_dist_info()
if rank == 0:
prog_bar = mmcv.ProgressBar(len(dataset))
for i, data in enumerate(data_loader):
with torch.no_grad():
result = model(return_loss=False, rescale=True, **data)
# encode mask results
if isinstance(result[0], tuple):
result = [(bbox_results, encode_mask_results(mask_results))
for bbox_results, mask_results in result]
results.extend(result)
if rank == 0:
batch_size = len(result)
for _ in range(batch_size * world_size):
prog_bar.update()
# collect results from all ranks
results = collect_results(results, len(dataset), tmpdir)
return results
def collect_results(result_part, size, tmpdir=None):
rank, world_size = get_dist_info()
# create a tmp dir if it is not specified
if tmpdir is None:
MAX_LEN = 512
# 32 is whitespace
dir_tensor = torch.full((MAX_LEN, ),
32,
dtype=torch.uint8,
device='cuda')
if rank == 0:
tmpdir = tempfile.mkdtemp()
tmpdir = torch.tensor(
bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
dir_tensor[:len(tmpdir)] = tmpdir
dist.broadcast(dir_tensor, 0)
tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
else:
mmcv.mkdir_or_exist(tmpdir)
# dump the part result to the dir
mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl'))
dist.barrier()
# collect all parts
if rank != 0:
return None
else:
# load results of all parts from tmp dir
part_list = []
for i in range(world_size):
part_file = osp.join(tmpdir, f'part_{i}.pkl')
part_list.append(mmcv.load(part_file))
# sort the results
ordered_results = []
for res in zip(*part_list):
ordered_results.extend(list(res))
# the dataloader may pad some samples
ordered_results = ordered_results[:size]
# remove tmp dir
shutil.rmtree(tmpdir)
return ordered_results
def parse_args():
parser = argparse.ArgumentParser(description='MMDet test detector')
parser.add_argument('config', help='test config file path')
@ -228,6 +132,13 @@ def parse_args():
parser.add_argument(
'--workers', type=int, default=32, help='workers per gpu')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument(
'--show-dir', help='directory where painted images will be saved')
parser.add_argument(
'--show-score-thr',
type=float,
default=0.3,
help='score threshold (default: 0.3)')
parser.add_argument('--tmpdir', help='tmp dir for writing some results')
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument(
@ -377,7 +288,14 @@ def main():
if not distributed:
model = MMDataParallel(model, device_ids=[0])
outputs = single_gpu_test(model, data_loader, args.show)
show_dir = args.show_dir
if show_dir is not None:
show_dir = osp.join(show_dir, corruption)
show_dir = osp.join(show_dir, corruption_severity)
if not osp.exists(show_dir):
osp.makedirs(show_dir)
outputs = single_gpu_test(model, data_loader, args.show,
show_dir, args.show_score_thr)
else:
model = MMDistributedDataParallel(
model.cuda(),

Loading…
Cancel
Save