[Feature]: support to customize type of runner (#4570)

* sup customize runner

* fix typo

* use build runner

* minor fix

* modify according to comments

* add an assertion

* swap order

* fix tutorial
pull/4643/head
Cao Yuhang 4 years ago committed by GitHub
parent 2a24412846
commit bf128b088a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      configs/_base_/schedules/schedule_1x.py
  2. 2
      configs/_base_/schedules/schedule_20e.py
  3. 2
      configs/_base_/schedules/schedule_2x.py
  4. 2
      configs/cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco.py
  5. 2
      configs/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco.py
  6. 2
      configs/cityscapes/faster_rcnn_r50_fpn_1x_cityscapes.py
  7. 2
      configs/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes.py
  8. 2
      configs/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco.py
  9. 2
      configs/cornernet/cornernet_hourglass104_mstest_32x3_210e_coco.py
  10. 2
      configs/cornernet/cornernet_hourglass104_mstest_8x6_210e_coco.py
  11. 2
      configs/deepfashion/mask_rcnn_r50_fpn_15e_deepfashion.py
  12. 2
      configs/detr/detr_r50_8x2_150e_coco.py
  13. 2
      configs/fast_rcnn/fast_rcnn_r50_fpn_2x_coco.py
  14. 2
      configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco.py
  15. 2
      configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco.py
  16. 2
      configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco.py
  17. 15
      configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_90k_coco.py
  18. 2
      configs/fcos/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py
  19. 2
      configs/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco.py
  20. 2
      configs/fcos/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py
  21. 2
      configs/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco.py
  22. 2
      configs/foveabox/fovea_align_r101_fpn_gn-head_4x4_2x_coco.py
  23. 2
      configs/foveabox/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py
  24. 2
      configs/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py
  25. 2
      configs/foveabox/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py
  26. 2
      configs/foveabox/fovea_r50_fpn_4x4_2x_coco.py
  27. 2
      configs/gfl/gfl_r50_fpn_mstrain_2x_coco.py
  28. 2
      configs/gn+ws/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco.py
  29. 2
      configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco.py
  30. 2
      configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py
  31. 2
      configs/gn+ws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
  32. 2
      configs/gn+ws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
  33. 2
      configs/gn/mask_rcnn_r101_fpn_gn-all_3x_coco.py
  34. 2
      configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py
  35. 2
      configs/gn/mask_rcnn_r50_fpn_gn-all_3x_coco.py
  36. 2
      configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py
  37. 2
      configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco.py
  38. 2
      configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_1x_coco.py
  39. 2
      configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py
  40. 2
      configs/grid_rcnn/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco.py
  41. 10
      configs/guided_anchoring/ga_retinanet_r101_caffe_fpn_mstrain_2x.py
  42. 2
      configs/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py
  43. 2
      configs/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco.py
  44. 2
      configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py
  45. 2
      configs/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco.py
  46. 2
      configs/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco.py
  47. 2
      configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco.py
  48. 2
      configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco.py
  49. 2
      configs/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py
  50. 2
      configs/hrnet/htc_hrnetv2p_w40_28e_coco.py
  51. 2
      configs/hrnet/htc_x101_64x4d_fpn_16x1_28e_coco.py
  52. 2
      configs/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco.py
  53. 2
      configs/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco.py
  54. 2
      configs/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco.py
  55. 2
      configs/htc/htc_r101_fpn_20e_coco.py
  56. 2
      configs/htc/htc_r50_fpn_20e_coco.py
  57. 2
      configs/htc/htc_x101_32x4d_fpn_16x1_20e_coco.py
  58. 2
      configs/htc/htc_x101_64x4d_fpn_16x1_20e_coco.py
  59. 2
      configs/htc/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco.py
  60. 2
      configs/instaboost/cascade_mask_rcnn_r50_fpn_instaboost_4x_coco.py
  61. 2
      configs/instaboost/mask_rcnn_r50_fpn_instaboost_4x_coco.py
  62. 2
      configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py
  63. 2
      configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py
  64. 2
      configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py
  65. 2
      configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco.py
  66. 2
      configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco.py
  67. 2
      configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco.py
  68. 2
      configs/nas_fpn/retinanet_r50_fpn_crop640_50e_coco.py
  69. 2
      configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py
  70. 2
      configs/paa/paa_r101_fpn_1x_coco.py
  71. 2
      configs/paa/paa_r101_fpn_2x_coco.py
  72. 2
      configs/paa/paa_r50_fpn_1.5x_coco.py
  73. 2
      configs/paa/paa_r50_fpn_2x_coco.py
  74. 2
      configs/paa/paa_r50_fpn_mstrain_3x_coco.py
  75. 2
      configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py
  76. 2
      configs/pascal_voc/retinanet_r50_fpn_1x_voc0712.py
  77. 2
      configs/pascal_voc/ssd300_voc0712.py
  78. 2
      configs/point_rend/point_rend_r50_caffe_fpn_mstrain_3x_coco.py
  79. 2
      configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_2x_coco.py
  80. 2
      configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
  81. 2
      configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
  82. 2
      configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py
  83. 2
      configs/res2net/htc_r2_101_fpn_20e_coco.py
  84. 2
      configs/retinanet/retinanet_r50_caffe_fpn_mstrain_2x_coco.py
  85. 2
      configs/retinanet/retinanet_r50_caffe_fpn_mstrain_3x_coco.py
  86. 2
      configs/retinanet/retinanet_r50_fpn_2x_coco.py
  87. 2
      configs/rpn/rpn_r50_fpn_2x_coco.py
  88. 2
      configs/scnet/scnet_r50_fpn_20e_coco.py
  89. 2
      configs/scratch/faster_rcnn_r50_fpn_gn-all_scratch_6x_coco.py
  90. 2
      configs/scratch/mask_rcnn_r50_fpn_gn-all_scratch_6x_coco.py
  91. 2
      configs/sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco.py
  92. 2
      configs/sparse_rcnn/sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco.py
  93. 2
      configs/tridentnet/tridentnet_r50_caffe_mstrain_3x_coco.py
  94. 2
      configs/vfnet/vfnet_r101_fpn_2x_coco.py
  95. 7
      configs/vfnet/vfnet_r50_fpn_1x_coco.py
  96. 2
      configs/vfnet/vfnet_r50_fpn_mstrain_2x_coco.py
  97. 2
      configs/wider_face/ssd300_wider_face.py
  98. 2
      configs/yolact/yolact_r50_1x8_coco.py
  99. 2
      configs/yolo/yolov3_d53_mstrain-608_273e_coco.py
  100. 3
      docs/tutorials/config.md
  101. Some files were not shown because too many files have changed in this diff Show More

@ -8,4 +8,4 @@ lr_config = dict(
warmup_iters=500,
warmup_ratio=0.001,
step=[8, 11])
total_epochs = 12
runner = dict(type='EpochBasedRunner', max_epochs=12)

@ -8,4 +8,4 @@ lr_config = dict(
warmup_iters=500,
warmup_ratio=0.001,
step=[16, 19])
total_epochs = 20
runner = dict(type='EpochBasedRunner', max_epochs=20)

@ -8,4 +8,4 @@ lr_config = dict(
warmup_iters=500,
warmup_ratio=0.001,
step=[16, 22])
total_epochs = 24
runner = dict(type='EpochBasedRunner', max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './cascade_rcnn_r50_fpn_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 19])
total_epochs = 20
runner = dict(max_epochs=20)

@ -102,4 +102,4 @@ lr_config = dict(
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[190])
total_epochs = 210
runner = dict(max_epochs=210)

@ -32,7 +32,7 @@ lr_config = dict(
warmup_ratio=0.001,
# [7] yields higher performance than [6]
step=[7])
total_epochs = 8 # actual epoch = 8 * 8 = 64
runner = dict(max_epochs=8) # actual epoch = 8 * 8 = 64
log_config = dict(interval=100)
# For better, more stable performance initialize from COCO
load_from = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # noqa

@ -39,7 +39,7 @@ lr_config = dict(
warmup_ratio=0.001,
# [7] yields higher performance than [6]
step=[7])
total_epochs = 8 # actual epoch = 8 * 8 = 64
runner = dict(max_epochs=8) # actual epoch = 8 * 8 = 64
log_config = dict(interval=100)
# For better, more stable performance initialize from COCO
load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth' # noqa

@ -102,4 +102,4 @@ lr_config = dict(
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[180])
total_epochs = 210
runner = dict(max_epochs=210)

@ -102,4 +102,4 @@ lr_config = dict(
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[180])
total_epochs = 210
runner = dict(max_epochs=210)

@ -102,4 +102,4 @@ lr_config = dict(
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[180])
total_epochs = 210
runner = dict(max_epochs=210)

@ -7,4 +7,4 @@ model = dict(
roi_head=dict(
bbox_head=dict(num_classes=15), mask_head=dict(num_classes=15)))
# runtime settings
total_epochs = 15
runner = dict(max_epochs=15)

@ -128,4 +128,4 @@ optimizer = dict(
optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2))
# learning policy
lr_config = dict(policy='step', step=[100])
total_epochs = 150
runner = dict(max_epochs=150)

@ -2,4 +2,4 @@ _base_ = './fast_rcnn_r50_fpn_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py'
# learning policy
lr_config = dict(step=[28, 34])
total_epochs = 36
runner = dict(max_epochs=36)

@ -1,4 +1,4 @@
_base_ = './faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 23])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py'
# learning policy
lr_config = dict(step=[28, 34])
total_epochs = 36
runner = dict(max_epochs=36)

@ -0,0 +1,15 @@
_base_ = 'faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py'
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[60000, 80000])
# Runner type
runner = dict(_delete_=True, type='IterBasedRunner', max_iters=90000)
checkpoint_config = dict(interval=10000)
evaluation = dict(interval=10000, metric='bbox')

@ -41,4 +41,4 @@ data = dict(
test=dict(pipeline=test_pipeline))
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -102,4 +102,4 @@ lr_config = dict(
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[8, 11])
total_epochs = 12
runner = dict(max_epochs=12)

@ -36,4 +36,4 @@ data = dict(
test=dict(pipeline=test_pipeline))
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -56,4 +56,4 @@ optimizer_config = dict(
_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -7,4 +7,4 @@ model = dict(
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)))
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -24,4 +24,4 @@ train_pipeline = [
data = dict(train=dict(pipeline=train_pipeline))
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -5,6 +5,6 @@ model = dict(
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)))
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)
optimizer_config = dict(
_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))

@ -22,4 +22,4 @@ train_pipeline = [
data = dict(train=dict(pipeline=train_pipeline))
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './fovea_r50_fpn_4x4_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,7 +1,7 @@
_base_ = './gfl_r50_fpn_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)
# multi-scale training
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

@ -1,4 +1,4 @@
_base_ = './mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py'
# learning policy
lr_config = dict(step=[20, 23])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
# learning policy
lr_config = dict(step=[20, 23])
total_epochs = 24
runner = dict(max_epochs=24)

@ -14,4 +14,4 @@ model = dict(
mask_head=dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg)))
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py'
# learning policy
lr_config = dict(step=[20, 23])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py'
# learning policy
lr_config = dict(step=[20, 23])
total_epochs = 24
runner = dict(max_epochs=24)

@ -2,4 +2,4 @@ _base_ = './mask_rcnn_r101_fpn_gn-all_2x_coco.py'
# learning policy
lr_config = dict(step=[28, 34])
total_epochs = 36
runner = dict(max_epochs=36)

@ -43,4 +43,4 @@ data = dict(
test=dict(pipeline=test_pipeline))
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -2,4 +2,4 @@ _base_ = './mask_rcnn_r50_fpn_gn-all_2x_coco.py'
# learning policy
lr_config = dict(step=[28, 34])
total_epochs = 36
runner = dict(max_epochs=36)

@ -12,4 +12,4 @@ model = dict(
mask_head=dict(norm_cfg=norm_cfg)))
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -2,4 +2,4 @@ _base_ = './mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py'
# learning policy
lr_config = dict(step=[28, 34])
total_epochs = 36
runner = dict(max_epochs=36)

@ -8,4 +8,4 @@ lr_config = dict(
step=[8, 11])
checkpoint_config = dict(interval=1)
# runtime settings
total_epochs = 12
runner = dict(max_epochs=12)

@ -132,4 +132,4 @@ lr_config = dict(
warmup_iters=3665,
warmup_ratio=1.0 / 80,
step=[17, 23])
total_epochs = 25
runner = dict(max_epochs=25)

@ -20,4 +20,4 @@ lr_config = dict(
warmup_iters=3665,
warmup_ratio=1.0 / 80,
step=[17, 23])
total_epochs = 25
runner = dict(max_epochs=25)

@ -1,3 +1,5 @@
_base_ = '../_base_/default_runtime.py'
# model settings
model = dict(
type='RetinaNet',
@ -162,10 +164,4 @@ log_config = dict(
])
# yapf:enable
# runtime settings
total_epochs = 24
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/ga_retinanet_r101_caffe_fpn_mstrain_2x'
load_from = None
resume_from = None
workflow = [('train', 1)]
runner = dict(max_epochs=24)

@ -36,4 +36,4 @@ model = dict(
out_channels=256))
# learning policy
lr_config = dict(step=[16, 19])
total_epochs = 20
runner = dict(max_epochs=20)

@ -36,4 +36,4 @@ model = dict(
out_channels=256))
# learning policy
lr_config = dict(step=[16, 19])
total_epochs = 20
runner = dict(max_epochs=20)

@ -2,4 +2,4 @@ _base_ = './faster_rcnn_hrnetv2p_w18_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './faster_rcnn_hrnetv2p_w32_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './faster_rcnn_hrnetv2p_w40_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './fcos_hrnetv2p_w18_gn-head_4x4_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -36,4 +36,4 @@ data = dict(
test=dict(pipeline=test_pipeline))
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './htc_hrnetv2p_w40_20e_coco.py'
# learning policy
lr_config = dict(step=[24, 27])
total_epochs = 28
runner = dict(max_epochs=28)

@ -1,4 +1,4 @@
_base_ = '../htc/htc_x101_64x4d_fpn_16x1_20e_coco.py'
# learning policy
lr_config = dict(step=[24, 27])
total_epochs = 28
runner = dict(max_epochs=28)

@ -1,4 +1,4 @@
_base_ = './mask_rcnn_hrnetv2p_w18_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './mask_rcnn_hrnetv2p_w32_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './mask_rcnn_hrnetv2p_w40_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -2,4 +2,4 @@ _base_ = './htc_r50_fpn_1x_coco.py'
model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
# learning policy
lr_config = dict(step=[16, 19])
total_epochs = 20
runner = dict(max_epochs=20)

@ -1,4 +1,4 @@
_base_ = './htc_r50_fpn_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 19])
total_epochs = 20
runner = dict(max_epochs=20)

@ -15,4 +15,4 @@ model = dict(
data = dict(samples_per_gpu=1, workers_per_gpu=1)
# learning policy
lr_config = dict(step=[16, 19])
total_epochs = 20
runner = dict(max_epochs=20)

@ -15,4 +15,4 @@ model = dict(
data = dict(samples_per_gpu=1, workers_per_gpu=1)
# learning policy
lr_config = dict(step=[16, 19])
total_epochs = 20
runner = dict(max_epochs=20)

@ -39,4 +39,4 @@ data = dict(
samples_per_gpu=1, workers_per_gpu=1, train=dict(pipeline=train_pipeline))
# learning policy
lr_config = dict(step=[16, 19])
total_epochs = 20
runner = dict(max_epochs=20)

@ -25,4 +25,4 @@ train_pipeline = [
data = dict(train=dict(pipeline=train_pipeline))
# learning policy
lr_config = dict(step=[32, 44])
total_epochs = 48
runner = dict(max_epochs=48)

@ -25,4 +25,4 @@ train_pipeline = [
data = dict(train=dict(pipeline=train_pipeline))
# learning policy
lr_config = dict(step=[32, 44])
total_epochs = 48
runner = dict(max_epochs=48)

@ -1,4 +1,4 @@
_base_ = './mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 23])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'
# learning policy
lr_config = dict(step=[28, 34])
total_epochs = 36
runner = dict(max_epochs=36)

@ -58,4 +58,4 @@ data = dict(
test=dict(pipeline=test_pipeline))
lr_config = dict(step=[28, 34])
total_epochs = 36
runner = dict(max_epochs=36)

@ -1,4 +1,4 @@
_base_ = './ms_rcnn_r101_caffe_fpn_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './ms_rcnn_r50_caffe_fpn_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './ms_rcnn_x101_64x4d_fpn_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -77,4 +77,4 @@ lr_config = dict(
warmup_ratio=0.1,
step=[30, 40])
# runtime settings
total_epochs = 50
runner = dict(max_epochs=50)

@ -76,4 +76,4 @@ lr_config = dict(
warmup_ratio=0.1,
step=[30, 40])
# runtime settings
total_epochs = 50
runner = dict(max_epochs=50)

@ -1,4 +1,2 @@
_base_ = './paa_r50_fpn_1x_coco.py'
model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
lr_config = dict(step=[16, 22])
total_epochs = 24

@ -1,3 +1,3 @@
_base_ = './paa_r101_fpn_1x_coco.py'
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,3 +1,3 @@
_base_ = './paa_r50_fpn_1x_coco.py'
lr_config = dict(step=[12, 16])
total_epochs = 18
runner = dict(max_epochs=18)

@ -1,3 +1,3 @@
_base_ = './paa_r50_fpn_1x_coco.py'
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -17,4 +17,4 @@ train_pipeline = [
]
data = dict(train=dict(pipeline=train_pipeline))
lr_config = dict(step=[28, 34])
total_epochs = 36
runner = dict(max_epochs=36)

@ -10,4 +10,4 @@ optimizer_config = dict(grad_clip=None)
# actual epoch = 3 * 3 = 9
lr_config = dict(policy='step', step=[3])
# runtime settings
total_epochs = 4 # actual epoch = 4 * 3 = 12
runner = dict(max_epochs=4) # actual epoch = 4 * 3 = 12

@ -10,4 +10,4 @@ optimizer_config = dict(grad_clip=None)
# actual epoch = 3 * 3 = 9
lr_config = dict(policy='step', step=[3])
# runtime settings
total_epochs = 4 # actual epoch = 4 * 3 = 12
runner = dict(max_epochs=4) # actual epoch = 4 * 3 = 12

@ -66,4 +66,4 @@ lr_config = dict(
step=[16, 20])
checkpoint_config = dict(interval=1)
# runtime settings
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './point_rend_r50_caffe_fpn_mstrain_1x_coco.py'
# learning policy
lr_config = dict(step=[28, 34])
total_epochs = 36
runner = dict(max_epochs=36)

@ -1,3 +1,3 @@
_base_ = './faster_rcnn_regnetx-3.2GF_fpn_1x_coco.py'
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -60,4 +60,4 @@ data = dict(
test=dict(pipeline=test_pipeline))
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005)
lr_config = dict(step=[28, 34])
total_epochs = 36
runner = dict(max_epochs=36)

@ -60,6 +60,6 @@ data = dict(
test=dict(pipeline=test_pipeline))
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005)
lr_config = dict(step=[28, 34])
total_epochs = 36
runner = dict(max_epochs=36)
optimizer_config = dict(
_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))

@ -1,3 +1,3 @@
_base_ = './reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py'
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -4,4 +4,4 @@ model = dict(
backbone=dict(type='Res2Net', depth=101, scales=4, base_width=26))
# learning policy
lr_config = dict(step=[16, 19])
total_epochs = 20
runner = dict(max_epochs=20)

@ -1,4 +1,4 @@
_base_ = './retinanet_r50_caffe_fpn_mstrain_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 23])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './retinanet_r50_caffe_fpn_mstrain_1x_coco.py'
# learning policy
lr_config = dict(step=[28, 34])
total_epochs = 36
runner = dict(max_epochs=36)

@ -1,4 +1,4 @@
_base_ = './retinanet_r50_fpn_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -2,4 +2,4 @@ _base_ = './rpn_r50_fpn_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -1,4 +1,4 @@
_base_ = './scnet_r50_fpn_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 19])
total_epochs = 20
runner = dict(max_epochs=20)

@ -19,4 +19,4 @@ optimizer = dict(paramwise_cfg=dict(norm_decay_mult=0))
optimizer_config = dict(_delete_=True, grad_clip=None)
# learning policy
lr_config = dict(warmup_ratio=0.1, step=[65, 71])
total_epochs = 73
runner = dict(max_epochs=73)

@ -20,4 +20,4 @@ optimizer = dict(paramwise_cfg=dict(norm_decay_mult=0))
optimizer_config = dict(_delete_=True, grad_clip=None)
# learning policy
lr_config = dict(warmup_ratio=0.1, step=[65, 71])
total_epochs = 73
runner = dict(max_epochs=73)

@ -92,4 +92,4 @@ optimizer = dict(_delete_=True, type='AdamW', lr=0.000025, weight_decay=0.0001)
optimizer_config = dict(_delete_=True, grad_clip=dict(max_norm=1, norm_type=2))
# learning policy
lr_config = dict(policy='step', step=[8, 11])
total_epochs = 12
runner = dict(max_epochs=12)

@ -20,4 +20,4 @@ train_pipeline = [
data = dict(train=dict(pipeline=train_pipeline))
lr_config = dict(policy='step', step=[27, 33])
total_epochs = 36
runner = dict(max_epochs=36)

@ -1,4 +1,4 @@
_base_ = 'tridentnet_r50_caffe_mstrain_1x_coco.py'
lr_config = dict(step=[28, 34])
total_epochs = 36
runner = dict(max_epochs=36)

@ -1,4 +1,4 @@
_base_ = './vfnet_r50_fpn_1x_coco.py'
model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -105,9 +105,4 @@ lr_config = dict(
warmup_iters=500,
warmup_ratio=0.1,
step=[8, 11])
total_epochs = 12
# runtime
load_from = None
resume_from = None
workflow = [('train', 1)]
runner = dict(max_epochs=12)

@ -36,4 +36,4 @@ data = dict(
test=dict(pipeline=test_pipeline))
# learning policy
lr_config = dict(step=[16, 22])
total_epochs = 24
runner = dict(max_epochs=24)

@ -14,5 +14,5 @@ lr_config = dict(
warmup_ratio=0.001,
step=[16, 20])
# runtime settings
total_epochs = 24
runner = dict(max_epochs=24)
log_config = dict(interval=1)

@ -155,6 +155,6 @@ lr_config = dict(
warmup_iters=500,
warmup_ratio=0.1,
step=[20, 42, 49, 52])
total_epochs = 55
runner = dict(max_epochs=55)
cudnn_benchmark = True
evaluation = dict(metric=['bbox', 'segm'])

@ -120,5 +120,5 @@ lr_config = dict(
warmup_ratio=0.1,
step=[218, 246])
# runtime settings
total_epochs = 273
runner = dict(max_epochs=273)
evaluation = dict(interval=1, metric=['bbox'])

@ -394,7 +394,7 @@ lr_config = dict( # Learning rate scheduler config used to register LrUpdater h
warmup_ratio=
0.001, # The ratio of the starting learning rate used for warmup
step=[8, 11]) # Steps to decay the learning rate
total_epochs = 12 # Total epochs to train the model
runner = dict(type='EpochBasedRunner', max_epochs=12) # Runner that runs the workflow in total max_epochs
checkpoint_config = dict( # Config to set the checkpoint hook, Refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/checkpoint.py for implementation.
interval=1) # The save interval is 1
log_config = dict( # config to register logger hook
@ -409,7 +409,6 @@ load_from = None # load models as a pre-trained model from a given path. This w
resume_from = None # Resume checkpoints from a given path, the training will be resumed from the epoch when the checkpoint's is saved.
workflow = [('train', 1)] # Workflow for runner. [('train', 1)] means there is only one workflow and the workflow named 'train' is executed once. The workflow trains the model by 12 epochs according to the total_epochs.
work_dir = 'work_dir' # Directory to save the model checkpoints and logs for the current experiments.
```
## FAQ

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save