[Feature] Support Swin Transformer backbone (#5748)
* [Feature] Support Swin Transformer backbone * add unittests * add unitest, support with_cp * fixed typo * fixed docstring * optimize import and docstring * add optional * update docstring * fixed config name * fixed some docstring typo * add PatchEmbed * remove patch size * add doc * add tests * resolve comments * add pad_to_stride * resolve comments * fix bugs * add adap pooling * use adap pooling * fix docstr * add uni test * add more doc * add example * remove patch_to_stride * use new patch embed and patch merge * rename poo * resolve comments * fix doc * move padding calculation to a function * fix init weights * use init cfg * add freeze stage Co-authored-by: zhangshilong <2392587229zsl@gmail.com>pull/6005/head
parent
a1c47b1643
commit
a6b876726e
9 changed files with 1052 additions and 3 deletions
@ -0,0 +1,5 @@ |
||||
_base_ = './mask_rcnn_swin-t-p4-w7_fpn_fp16_ms-crop-3x_coco.py' |
||||
pretrained = 'https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_b16x64_300e_imagenet_20210615_110219-7f9d988b.pth' # noqa |
||||
model = dict( |
||||
backbone=dict(depths=[2, 2, 18, 2]), |
||||
init_cfg=dict(type='Pretrained', checkpoint=pretrained)) |
@ -0,0 +1,41 @@ |
||||
_base_ = [ |
||||
'../_base_/models/mask_rcnn_r50_fpn.py', |
||||
'../_base_/datasets/coco_instance.py', |
||||
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' |
||||
] |
||||
pretrained = 'https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_b16x64_300e_imagenet_20210616_090925-66df6be6.pth' # noqa |
||||
model = dict( |
||||
type='MaskRCNN', |
||||
backbone=dict( |
||||
_delete_=True, |
||||
type='SwinTransformer', |
||||
embed_dims=96, |
||||
depths=[2, 2, 6, 2], |
||||
num_heads=[3, 6, 12, 24], |
||||
window_size=7, |
||||
mlp_ratio=4, |
||||
qkv_bias=True, |
||||
qk_scale=None, |
||||
drop_rate=0., |
||||
attn_drop_rate=0., |
||||
drop_path_rate=0.2, |
||||
patch_norm=True, |
||||
out_indices=(0, 1, 2, 3), |
||||
with_cp=False, |
||||
init_cfg=dict(type='Pretrained', checkpoint=pretrained)), |
||||
neck=dict(in_channels=[96, 192, 384, 768])) |
||||
|
||||
optimizer = dict( |
||||
_delete_=True, |
||||
type='AdamW', |
||||
lr=0.0001, |
||||
betas=(0.9, 0.999), |
||||
weight_decay=0.05, |
||||
paramwise_cfg=dict( |
||||
custom_keys={ |
||||
'absolute_pos_embed': dict(decay_mult=0.), |
||||
'relative_position_bias_table': dict(decay_mult=0.), |
||||
'norm': dict(decay_mult=0.) |
||||
})) |
||||
lr_config = dict(warmup_iters=1000, step=[8, 11]) |
||||
runner = dict(max_epochs=12) |
@ -0,0 +1,3 @@ |
||||
_base_ = './mask_rcnn_swin-t-p4-w7_fpn_ms-crop-3x_coco.py' |
||||
# you need to set mode='dynamic' if you are using pytorch<=1.5.0 |
||||
fp16 = dict(loss_scale=dict(init_scale=512)) |
@ -0,0 +1,90 @@ |
||||
_base_ = [ |
||||
'../_base_/models/mask_rcnn_r50_fpn.py', |
||||
'../_base_/datasets/coco_instance.py', |
||||
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' |
||||
] |
||||
|
||||
pretrained = 'https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_b16x64_300e_imagenet_20210616_090925-66df6be6.pth' # noqa |
||||
|
||||
model = dict( |
||||
type='MaskRCNN', |
||||
backbone=dict( |
||||
_delete_=True, |
||||
type='SwinTransformer', |
||||
embed_dims=96, |
||||
depths=[2, 2, 6, 2], |
||||
num_heads=[3, 6, 12, 24], |
||||
window_size=7, |
||||
mlp_ratio=4, |
||||
qkv_bias=True, |
||||
qk_scale=None, |
||||
drop_rate=0., |
||||
attn_drop_rate=0., |
||||
drop_path_rate=0.2, |
||||
patch_norm=True, |
||||
out_indices=(0, 1, 2, 3), |
||||
with_cp=False, |
||||
init_cfg=dict(type='Pretrained', checkpoint=pretrained)), |
||||
neck=dict(in_channels=[96, 192, 384, 768])) |
||||
|
||||
img_norm_cfg = dict( |
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
||||
|
||||
# augmentation strategy originates from DETR / Sparse RCNN |
||||
train_pipeline = [ |
||||
dict(type='LoadImageFromFile'), |
||||
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), |
||||
dict(type='RandomFlip', flip_ratio=0.5), |
||||
dict( |
||||
type='AutoAugment', |
||||
policies=[[ |
||||
dict( |
||||
type='Resize', |
||||
img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), |
||||
(608, 1333), (640, 1333), (672, 1333), (704, 1333), |
||||
(736, 1333), (768, 1333), (800, 1333)], |
||||
multiscale_mode='value', |
||||
keep_ratio=True) |
||||
], |
||||
[ |
||||
dict( |
||||
type='Resize', |
||||
img_scale=[(400, 1333), (500, 1333), (600, 1333)], |
||||
multiscale_mode='value', |
||||
keep_ratio=True), |
||||
dict( |
||||
type='RandomCrop', |
||||
crop_type='absolute_range', |
||||
crop_size=(384, 600), |
||||
allow_negative_crop=True), |
||||
dict( |
||||
type='Resize', |
||||
img_scale=[(480, 1333), (512, 1333), (544, 1333), |
||||
(576, 1333), (608, 1333), (640, 1333), |
||||
(672, 1333), (704, 1333), (736, 1333), |
||||
(768, 1333), (800, 1333)], |
||||
multiscale_mode='value', |
||||
override=True, |
||||
keep_ratio=True) |
||||
]]), |
||||
dict(type='Normalize', **img_norm_cfg), |
||||
dict(type='Pad', size_divisor=32), |
||||
dict(type='DefaultFormatBundle'), |
||||
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), |
||||
] |
||||
data = dict(train=dict(pipeline=train_pipeline)) |
||||
|
||||
optimizer = dict( |
||||
_delete_=True, |
||||
type='AdamW', |
||||
lr=0.0001, |
||||
betas=(0.9, 0.999), |
||||
weight_decay=0.05, |
||||
paramwise_cfg=dict( |
||||
custom_keys={ |
||||
'absolute_pos_embed': dict(decay_mult=0.), |
||||
'relative_position_bias_table': dict(decay_mult=0.), |
||||
'norm': dict(decay_mult=0.) |
||||
})) |
||||
lr_config = dict(warmup_iters=1000, step=[27, 33]) |
||||
runner = dict(max_epochs=36) |
@ -0,0 +1,764 @@ |
||||
import warnings |
||||
from collections import OrderedDict |
||||
from copy import deepcopy |
||||
|
||||
import torch |
||||
import torch.nn as nn |
||||
import torch.nn.functional as F |
||||
import torch.utils.checkpoint as cp |
||||
from mmcv.cnn import build_norm_layer, constant_init, trunc_normal_init |
||||
from mmcv.cnn.bricks.transformer import FFN, build_dropout |
||||
from mmcv.runner import BaseModule, ModuleList, _load_checkpoint |
||||
from mmcv.utils import to_2tuple |
||||
|
||||
from ...utils import get_root_logger |
||||
from ..builder import BACKBONES |
||||
from ..utils.ckpt_convert import swin_converter |
||||
from ..utils.transformer import PatchEmbed, PatchMerging |
||||
|
||||
|
||||
class WindowMSA(BaseModule): |
||||
"""Window based multi-head self-attention (W-MSA) module with relative |
||||
position bias. |
||||
|
||||
Args: |
||||
embed_dims (int): Number of input channels. |
||||
num_heads (int): Number of attention heads. |
||||
window_size (tuple[int]): The height and width of the window. |
||||
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v. |
||||
Default: True. |
||||
qk_scale (float | None, optional): Override default qk scale of |
||||
head_dim ** -0.5 if set. Default: None. |
||||
attn_drop_rate (float, optional): Dropout ratio of attention weight. |
||||
Default: 0.0 |
||||
proj_drop_rate (float, optional): Dropout ratio of output. Default: 0. |
||||
init_cfg (dict | None, optional): The Config for initialization. |
||||
Default: None. |
||||
""" |
||||
|
||||
def __init__(self, |
||||
embed_dims, |
||||
num_heads, |
||||
window_size, |
||||
qkv_bias=True, |
||||
qk_scale=None, |
||||
attn_drop_rate=0., |
||||
proj_drop_rate=0., |
||||
init_cfg=None): |
||||
|
||||
super().__init__() |
||||
self.embed_dims = embed_dims |
||||
self.window_size = window_size # Wh, Ww |
||||
self.num_heads = num_heads |
||||
head_embed_dims = embed_dims // num_heads |
||||
self.scale = qk_scale or head_embed_dims**-0.5 |
||||
self.init_cfg = init_cfg |
||||
|
||||
# define a parameter table of relative position bias |
||||
self.relative_position_bias_table = nn.Parameter( |
||||
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), |
||||
num_heads)) # 2*Wh-1 * 2*Ww-1, nH |
||||
|
||||
# About 2x faster than original impl |
||||
Wh, Ww = self.window_size |
||||
rel_index_coords = self.double_step_seq(2 * Ww - 1, Wh, 1, Ww) |
||||
rel_position_index = rel_index_coords + rel_index_coords.T |
||||
rel_position_index = rel_position_index.flip(1).contiguous() |
||||
self.register_buffer('relative_position_index', rel_position_index) |
||||
|
||||
self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias) |
||||
self.attn_drop = nn.Dropout(attn_drop_rate) |
||||
self.proj = nn.Linear(embed_dims, embed_dims) |
||||
self.proj_drop = nn.Dropout(proj_drop_rate) |
||||
|
||||
self.softmax = nn.Softmax(dim=-1) |
||||
|
||||
def init_weights(self): |
||||
trunc_normal_init(self.relative_position_bias_table, std=0.02) |
||||
|
||||
def forward(self, x, mask=None): |
||||
""" |
||||
Args: |
||||
|
||||
x (tensor): input features with shape of (num_windows*B, N, C) |
||||
mask (tensor | None, Optional): mask with shape of (num_windows, |
||||
Wh*Ww, Wh*Ww), value should be between (-inf, 0]. |
||||
""" |
||||
B, N, C = x.shape |
||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, |
||||
C // self.num_heads).permute(2, 0, 3, 1, 4) |
||||
# make torchscript happy (cannot use tensor as tuple) |
||||
q, k, v = qkv[0], qkv[1], qkv[2] |
||||
|
||||
q = q * self.scale |
||||
attn = (q @ k.transpose(-2, -1)) |
||||
|
||||
relative_position_bias = self.relative_position_bias_table[ |
||||
self.relative_position_index.view(-1)].view( |
||||
self.window_size[0] * self.window_size[1], |
||||
self.window_size[0] * self.window_size[1], |
||||
-1) # Wh*Ww,Wh*Ww,nH |
||||
relative_position_bias = relative_position_bias.permute( |
||||
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww |
||||
attn = attn + relative_position_bias.unsqueeze(0) |
||||
|
||||
if mask is not None: |
||||
nW = mask.shape[0] |
||||
attn = attn.view(B // nW, nW, self.num_heads, N, |
||||
N) + mask.unsqueeze(1).unsqueeze(0) |
||||
attn = attn.view(-1, self.num_heads, N, N) |
||||
attn = self.softmax(attn) |
||||
|
||||
attn = self.attn_drop(attn) |
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
||||
x = self.proj(x) |
||||
x = self.proj_drop(x) |
||||
return x |
||||
|
||||
@staticmethod |
||||
def double_step_seq(step1, len1, step2, len2): |
||||
seq1 = torch.arange(0, step1 * len1, step1) |
||||
seq2 = torch.arange(0, step2 * len2, step2) |
||||
return (seq1[:, None] + seq2[None, :]).reshape(1, -1) |
||||
|
||||
|
||||
class ShiftWindowMSA(BaseModule): |
||||
"""Shifted Window Multihead Self-Attention Module. |
||||
|
||||
Args: |
||||
embed_dims (int): Number of input channels. |
||||
num_heads (int): Number of attention heads. |
||||
window_size (int): The height and width of the window. |
||||
shift_size (int, optional): The shift step of each window towards |
||||
right-bottom. If zero, act as regular window-msa. Defaults to 0. |
||||
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v. |
||||
Default: True |
||||
qk_scale (float | None, optional): Override default qk scale of |
||||
head_dim ** -0.5 if set. Defaults: None. |
||||
attn_drop_rate (float, optional): Dropout ratio of attention weight. |
||||
Defaults: 0. |
||||
proj_drop_rate (float, optional): Dropout ratio of output. |
||||
Defaults: 0. |
||||
dropout_layer (dict, optional): The dropout_layer used before output. |
||||
Defaults: dict(type='DropPath', drop_prob=0.). |
||||
init_cfg (dict, optional): The extra config for initialization. |
||||
Default: None. |
||||
""" |
||||
|
||||
def __init__(self, |
||||
embed_dims, |
||||
num_heads, |
||||
window_size, |
||||
shift_size=0, |
||||
qkv_bias=True, |
||||
qk_scale=None, |
||||
attn_drop_rate=0, |
||||
proj_drop_rate=0, |
||||
dropout_layer=dict(type='DropPath', drop_prob=0.), |
||||
init_cfg=None): |
||||
super().__init__(init_cfg) |
||||
|
||||
self.window_size = window_size |
||||
self.shift_size = shift_size |
||||
assert 0 <= self.shift_size < self.window_size |
||||
|
||||
self.w_msa = WindowMSA( |
||||
embed_dims=embed_dims, |
||||
num_heads=num_heads, |
||||
window_size=to_2tuple(window_size), |
||||
qkv_bias=qkv_bias, |
||||
qk_scale=qk_scale, |
||||
attn_drop_rate=attn_drop_rate, |
||||
proj_drop_rate=proj_drop_rate, |
||||
init_cfg=None) |
||||
|
||||
self.drop = build_dropout(dropout_layer) |
||||
|
||||
def forward(self, query, hw_shape): |
||||
B, L, C = query.shape |
||||
H, W = hw_shape |
||||
assert L == H * W, 'input feature has wrong size' |
||||
query = query.view(B, H, W, C) |
||||
|
||||
# pad feature maps to multiples of window size |
||||
pad_r = (self.window_size - W % self.window_size) % self.window_size |
||||
pad_b = (self.window_size - H % self.window_size) % self.window_size |
||||
query = F.pad(query, (0, 0, 0, pad_r, 0, pad_b)) |
||||
H_pad, W_pad = query.shape[1], query.shape[2] |
||||
|
||||
# cyclic shift |
||||
if self.shift_size > 0: |
||||
shifted_query = torch.roll( |
||||
query, |
||||
shifts=(-self.shift_size, -self.shift_size), |
||||
dims=(1, 2)) |
||||
|
||||
# calculate attention mask for SW-MSA |
||||
img_mask = torch.zeros((1, H_pad, W_pad, 1), device=query.device) |
||||
h_slices = (slice(0, -self.window_size), |
||||
slice(-self.window_size, |
||||
-self.shift_size), slice(-self.shift_size, None)) |
||||
w_slices = (slice(0, -self.window_size), |
||||
slice(-self.window_size, |
||||
-self.shift_size), slice(-self.shift_size, None)) |
||||
cnt = 0 |
||||
for h in h_slices: |
||||
for w in w_slices: |
||||
img_mask[:, h, w, :] = cnt |
||||
cnt += 1 |
||||
|
||||
# nW, window_size, window_size, 1 |
||||
mask_windows = self.window_partition(img_mask) |
||||
mask_windows = mask_windows.view( |
||||
-1, self.window_size * self.window_size) |
||||
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
||||
attn_mask = attn_mask.masked_fill(attn_mask != 0, |
||||
float(-100.0)).masked_fill( |
||||
attn_mask == 0, float(0.0)) |
||||
else: |
||||
shifted_query = query |
||||
attn_mask = None |
||||
|
||||
# nW*B, window_size, window_size, C |
||||
query_windows = self.window_partition(shifted_query) |
||||
# nW*B, window_size*window_size, C |
||||
query_windows = query_windows.view(-1, self.window_size**2, C) |
||||
|
||||
# W-MSA/SW-MSA (nW*B, window_size*window_size, C) |
||||
attn_windows = self.w_msa(query_windows, mask=attn_mask) |
||||
|
||||
# merge windows |
||||
attn_windows = attn_windows.view(-1, self.window_size, |
||||
self.window_size, C) |
||||
|
||||
# B H' W' C |
||||
shifted_x = self.window_reverse(attn_windows, H_pad, W_pad) |
||||
# reverse cyclic shift |
||||
if self.shift_size > 0: |
||||
x = torch.roll( |
||||
shifted_x, |
||||
shifts=(self.shift_size, self.shift_size), |
||||
dims=(1, 2)) |
||||
else: |
||||
x = shifted_x |
||||
|
||||
if pad_r > 0 or pad_b: |
||||
x = x[:, :H, :W, :].contiguous() |
||||
|
||||
x = x.view(B, H * W, C) |
||||
|
||||
x = self.drop(x) |
||||
return x |
||||
|
||||
def window_reverse(self, windows, H, W): |
||||
""" |
||||
Args: |
||||
windows: (num_windows*B, window_size, window_size, C) |
||||
H (int): Height of image |
||||
W (int): Width of image |
||||
Returns: |
||||
x: (B, H, W, C) |
||||
""" |
||||
window_size = self.window_size |
||||
B = int(windows.shape[0] / (H * W / window_size / window_size)) |
||||
x = windows.view(B, H // window_size, W // window_size, window_size, |
||||
window_size, -1) |
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
||||
return x |
||||
|
||||
def window_partition(self, x): |
||||
""" |
||||
Args: |
||||
x: (B, H, W, C) |
||||
Returns: |
||||
windows: (num_windows*B, window_size, window_size, C) |
||||
""" |
||||
B, H, W, C = x.shape |
||||
window_size = self.window_size |
||||
x = x.view(B, H // window_size, window_size, W // window_size, |
||||
window_size, C) |
||||
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous() |
||||
windows = windows.view(-1, window_size, window_size, C) |
||||
return windows |
||||
|
||||
|
||||
class SwinBlock(BaseModule): |
||||
"""" |
||||
Args: |
||||
embed_dims (int): The feature dimension. |
||||
num_heads (int): Parallel attention heads. |
||||
feedforward_channels (int): The hidden dimension for FFNs. |
||||
window_size (int, optional): The local window scale. Default: 7. |
||||
shift (bool, optional): whether to shift window or not. Default False. |
||||
qkv_bias (bool, optional): enable bias for qkv if True. Default: True. |
||||
qk_scale (float | None, optional): Override default qk scale of |
||||
head_dim ** -0.5 if set. Default: None. |
||||
drop_rate (float, optional): Dropout rate. Default: 0. |
||||
attn_drop_rate (float, optional): Attention dropout rate. Default: 0. |
||||
drop_path_rate (float, optional): Stochastic depth rate. Default: 0. |
||||
act_cfg (dict, optional): The config dict of activation function. |
||||
Default: dict(type='GELU'). |
||||
norm_cfg (dict, optional): The config dict of normalization. |
||||
Default: dict(type='LN'). |
||||
with_cp (bool, optional): Use checkpoint or not. Using checkpoint |
||||
will save some memory while slowing down the training speed. |
||||
Default: False. |
||||
init_cfg (dict | list | None, optional): The init config. |
||||
Default: None. |
||||
""" |
||||
|
||||
def __init__(self, |
||||
embed_dims, |
||||
num_heads, |
||||
feedforward_channels, |
||||
window_size=7, |
||||
shift=False, |
||||
qkv_bias=True, |
||||
qk_scale=None, |
||||
drop_rate=0., |
||||
attn_drop_rate=0., |
||||
drop_path_rate=0., |
||||
act_cfg=dict(type='GELU'), |
||||
norm_cfg=dict(type='LN'), |
||||
with_cp=False, |
||||
init_cfg=None): |
||||
|
||||
super(SwinBlock, self).__init__() |
||||
|
||||
self.init_cfg = init_cfg |
||||
self.with_cp = with_cp |
||||
|
||||
self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1] |
||||
self.attn = ShiftWindowMSA( |
||||
embed_dims=embed_dims, |
||||
num_heads=num_heads, |
||||
window_size=window_size, |
||||
shift_size=window_size // 2 if shift else 0, |
||||
qkv_bias=qkv_bias, |
||||
qk_scale=qk_scale, |
||||
attn_drop_rate=attn_drop_rate, |
||||
proj_drop_rate=drop_rate, |
||||
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), |
||||
init_cfg=None) |
||||
|
||||
self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1] |
||||
self.ffn = FFN( |
||||
embed_dims=embed_dims, |
||||
feedforward_channels=feedforward_channels, |
||||
num_fcs=2, |
||||
ffn_drop=drop_rate, |
||||
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), |
||||
act_cfg=act_cfg, |
||||
add_identity=True, |
||||
init_cfg=None) |
||||
|
||||
def forward(self, x, hw_shape): |
||||
|
||||
def _inner_forward(x): |
||||
identity = x |
||||
x = self.norm1(x) |
||||
x = self.attn(x, hw_shape) |
||||
|
||||
x = x + identity |
||||
|
||||
identity = x |
||||
x = self.norm2(x) |
||||
x = self.ffn(x, identity=identity) |
||||
|
||||
return x |
||||
|
||||
if self.with_cp and x.requires_grad: |
||||
x = cp.checkpoint(_inner_forward, x) |
||||
else: |
||||
x = _inner_forward(x) |
||||
|
||||
return x |
||||
|
||||
|
||||
class SwinBlockSequence(BaseModule): |
||||
"""Implements one stage in Swin Transformer. |
||||
|
||||
Args: |
||||
embed_dims (int): The feature dimension. |
||||
num_heads (int): Parallel attention heads. |
||||
feedforward_channels (int): The hidden dimension for FFNs. |
||||
depth (int): The number of blocks in this stage. |
||||
window_size (int, optional): The local window scale. Default: 7. |
||||
qkv_bias (bool, optional): enable bias for qkv if True. Default: True. |
||||
qk_scale (float | None, optional): Override default qk scale of |
||||
head_dim ** -0.5 if set. Default: None. |
||||
drop_rate (float, optional): Dropout rate. Default: 0. |
||||
attn_drop_rate (float, optional): Attention dropout rate. Default: 0. |
||||
drop_path_rate (float | list[float], optional): Stochastic depth |
||||
rate. Default: 0. |
||||
downsample (BaseModule | None, optional): The downsample operation |
||||
module. Default: None. |
||||
act_cfg (dict, optional): The config dict of activation function. |
||||
Default: dict(type='GELU'). |
||||
norm_cfg (dict, optional): The config dict of normalization. |
||||
Default: dict(type='LN'). |
||||
with_cp (bool, optional): Use checkpoint or not. Using checkpoint |
||||
will save some memory while slowing down the training speed. |
||||
Default: False. |
||||
init_cfg (dict | list | None, optional): The init config. |
||||
Default: None. |
||||
""" |
||||
|
||||
def __init__(self, |
||||
embed_dims, |
||||
num_heads, |
||||
feedforward_channels, |
||||
depth, |
||||
window_size=7, |
||||
qkv_bias=True, |
||||
qk_scale=None, |
||||
drop_rate=0., |
||||
attn_drop_rate=0., |
||||
drop_path_rate=0., |
||||
downsample=None, |
||||
act_cfg=dict(type='GELU'), |
||||
norm_cfg=dict(type='LN'), |
||||
with_cp=False, |
||||
init_cfg=None): |
||||
super().__init__(init_cfg=init_cfg) |
||||
|
||||
if isinstance(drop_path_rate, list): |
||||
drop_path_rates = drop_path_rate |
||||
assert len(drop_path_rates) == depth |
||||
else: |
||||
drop_path_rates = [deepcopy(drop_path_rate) for _ in range(depth)] |
||||
|
||||
self.blocks = ModuleList() |
||||
for i in range(depth): |
||||
block = SwinBlock( |
||||
embed_dims=embed_dims, |
||||
num_heads=num_heads, |
||||
feedforward_channels=feedforward_channels, |
||||
window_size=window_size, |
||||
shift=False if i % 2 == 0 else True, |
||||
qkv_bias=qkv_bias, |
||||
qk_scale=qk_scale, |
||||
drop_rate=drop_rate, |
||||
attn_drop_rate=attn_drop_rate, |
||||
drop_path_rate=drop_path_rates[i], |
||||
act_cfg=act_cfg, |
||||
norm_cfg=norm_cfg, |
||||
with_cp=with_cp, |
||||
init_cfg=None) |
||||
self.blocks.append(block) |
||||
|
||||
self.downsample = downsample |
||||
|
||||
def forward(self, x, hw_shape): |
||||
for block in self.blocks: |
||||
x = block(x, hw_shape) |
||||
|
||||
if self.downsample: |
||||
x_down, down_hw_shape = self.downsample(x, hw_shape) |
||||
return x_down, down_hw_shape, x, hw_shape |
||||
else: |
||||
return x, hw_shape, x, hw_shape |
||||
|
||||
|
||||
@BACKBONES.register_module() |
||||
class SwinTransformer(BaseModule): |
||||
""" Swin Transformer |
||||
A PyTorch implement of : `Swin Transformer: |
||||
Hierarchical Vision Transformer using Shifted Windows` - |
||||
https://arxiv.org/abs/2103.14030 |
||||
|
||||
Inspiration from |
||||
https://github.com/microsoft/Swin-Transformer |
||||
|
||||
Args: |
||||
pretrain_img_size (int | tuple[int]): The size of input image when |
||||
pretrain. Defaults: 224. |
||||
in_channels (int): The num of input channels. |
||||
Defaults: 3. |
||||
embed_dims (int): The feature dimension. Default: 96. |
||||
patch_size (int | tuple[int]): Patch size. Default: 4. |
||||
window_size (int): Window size. Default: 7. |
||||
mlp_ratio (int): Ratio of mlp hidden dim to embedding dim. |
||||
Default: 4. |
||||
depths (tuple[int]): Depths of each Swin Transformer stage. |
||||
Default: (2, 2, 6, 2). |
||||
num_heads (tuple[int]): Parallel attention heads of each Swin |
||||
Transformer stage. Default: (3, 6, 12, 24). |
||||
strides (tuple[int]): The patch merging or patch embedding stride of |
||||
each Swin Transformer stage. (In swin, we set kernel size equal to |
||||
stride.) Default: (4, 2, 2, 2). |
||||
out_indices (tuple[int]): Output from which stages. |
||||
Default: (0, 1, 2, 3). |
||||
qkv_bias (bool, optional): If True, add a learnable bias to query, key, |
||||
value. Default: True |
||||
qk_scale (float | None, optional): Override default qk scale of |
||||
head_dim ** -0.5 if set. Default: None. |
||||
patch_norm (bool): If add a norm layer for patch embed and patch |
||||
merging. Default: True. |
||||
drop_rate (float): Dropout rate. Defaults: 0. |
||||
attn_drop_rate (float): Attention dropout rate. Default: 0. |
||||
drop_path_rate (float): Stochastic depth rate. Defaults: 0.1. |
||||
use_abs_pos_embed (bool): If True, add absolute position embedding to |
||||
the patch embedding. Defaults: False. |
||||
act_cfg (dict): Config dict for activation layer. |
||||
Default: dict(type='LN'). |
||||
norm_cfg (dict): Config dict for normalization layer at |
||||
output of backone. Defaults: dict(type='LN'). |
||||
with_cp (bool, optional): Use checkpoint or not. Using checkpoint |
||||
will save some memory while slowing down the training speed. |
||||
Default: False. |
||||
pretrained (str, optional): model pretrained path. Default: None. |
||||
convert_weights (bool): The flag indicates whether the |
||||
pre-trained model is from the original repo. We may need |
||||
to convert some keys to make it compatible. |
||||
Default: False. |
||||
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). |
||||
-1 means not freezing any parameters. |
||||
init_cfg (dict, optional): The Config for initialization. |
||||
Defaults to None. |
||||
""" |
||||
|
||||
def __init__(self, |
||||
pretrain_img_size=224, |
||||
in_channels=3, |
||||
embed_dims=96, |
||||
patch_size=4, |
||||
window_size=7, |
||||
mlp_ratio=4, |
||||
depths=(2, 2, 6, 2), |
||||
num_heads=(3, 6, 12, 24), |
||||
strides=(4, 2, 2, 2), |
||||
out_indices=(0, 1, 2, 3), |
||||
qkv_bias=True, |
||||
qk_scale=None, |
||||
patch_norm=True, |
||||
drop_rate=0., |
||||
attn_drop_rate=0., |
||||
drop_path_rate=0.1, |
||||
use_abs_pos_embed=False, |
||||
act_cfg=dict(type='GELU'), |
||||
norm_cfg=dict(type='LN'), |
||||
with_cp=False, |
||||
pretrained=None, |
||||
convert_weights=False, |
||||
frozen_stages=-1, |
||||
init_cfg=None): |
||||
self.convert_weights = convert_weights |
||||
self.frozen_stages = frozen_stages |
||||
if isinstance(pretrain_img_size, int): |
||||
pretrain_img_size = to_2tuple(pretrain_img_size) |
||||
elif isinstance(pretrain_img_size, tuple): |
||||
if len(pretrain_img_size) == 1: |
||||
pretrain_img_size = to_2tuple(pretrain_img_size[0]) |
||||
assert len(pretrain_img_size) == 2, \ |
||||
f'The size of image should have length 1 or 2, ' \ |
||||
f'but got {len(pretrain_img_size)}' |
||||
|
||||
assert not (init_cfg and pretrained), \ |
||||
'init_cfg and pretrained cannot be setting at the same time' |
||||
if isinstance(pretrained, str): |
||||
warnings.warn('DeprecationWarning: pretrained is deprecated, ' |
||||
'please use "init_cfg" instead') |
||||
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) |
||||
elif pretrained is None: |
||||
self.init_cfg = init_cfg |
||||
else: |
||||
raise TypeError('pretrained must be a str or None') |
||||
|
||||
super(SwinTransformer, self).__init__(init_cfg=init_cfg) |
||||
|
||||
num_layers = len(depths) |
||||
self.out_indices = out_indices |
||||
self.use_abs_pos_embed = use_abs_pos_embed |
||||
|
||||
assert strides[0] == patch_size, 'Use non-overlapping patch embed.' |
||||
|
||||
self.patch_embed = PatchEmbed( |
||||
in_channels=in_channels, |
||||
embed_dims=embed_dims, |
||||
conv_type='Conv2d', |
||||
kernel_size=patch_size, |
||||
stride=strides[0], |
||||
norm_cfg=norm_cfg if patch_norm else None, |
||||
init_cfg=None) |
||||
|
||||
if self.use_abs_pos_embed: |
||||
patch_row = pretrain_img_size[0] // patch_size |
||||
patch_col = pretrain_img_size[1] // patch_size |
||||
num_patches = patch_row * patch_col |
||||
self.absolute_pos_embed = nn.Parameter( |
||||
torch.zeros((1, num_patches, embed_dims))) |
||||
|
||||
self.drop_after_pos = nn.Dropout(p=drop_rate) |
||||
|
||||
# set stochastic depth decay rule |
||||
total_depth = sum(depths) |
||||
dpr = [ |
||||
x.item() for x in torch.linspace(0, drop_path_rate, total_depth) |
||||
] |
||||
|
||||
self.stages = ModuleList() |
||||
in_channels = embed_dims |
||||
for i in range(num_layers): |
||||
if i < num_layers - 1: |
||||
downsample = PatchMerging( |
||||
in_channels=in_channels, |
||||
out_channels=2 * in_channels, |
||||
stride=strides[i + 1], |
||||
norm_cfg=norm_cfg if patch_norm else None, |
||||
init_cfg=None) |
||||
else: |
||||
downsample = None |
||||
|
||||
stage = SwinBlockSequence( |
||||
embed_dims=in_channels, |
||||
num_heads=num_heads[i], |
||||
feedforward_channels=mlp_ratio * in_channels, |
||||
depth=depths[i], |
||||
window_size=window_size, |
||||
qkv_bias=qkv_bias, |
||||
qk_scale=qk_scale, |
||||
drop_rate=drop_rate, |
||||
attn_drop_rate=attn_drop_rate, |
||||
drop_path_rate=dpr[sum(depths[:i]):sum(depths[:i + 1])], |
||||
downsample=downsample, |
||||
act_cfg=act_cfg, |
||||
norm_cfg=norm_cfg, |
||||
with_cp=with_cp, |
||||
init_cfg=None) |
||||
self.stages.append(stage) |
||||
if downsample: |
||||
in_channels = downsample.out_channels |
||||
|
||||
self.num_features = [int(embed_dims * 2**i) for i in range(num_layers)] |
||||
# Add a norm layer for each output |
||||
for i in out_indices: |
||||
layer = build_norm_layer(norm_cfg, self.num_features[i])[1] |
||||
layer_name = f'norm{i}' |
||||
self.add_module(layer_name, layer) |
||||
|
||||
def train(self, mode=True): |
||||
"""Convert the model into training mode while keep layers freezed.""" |
||||
super(SwinTransformer, self).train(mode) |
||||
self._freeze_stages() |
||||
|
||||
def _freeze_stages(self): |
||||
if self.frozen_stages >= 0: |
||||
self.patch_embed.eval() |
||||
for param in self.patch_embed.parameters(): |
||||
param.requires_grad = False |
||||
if self.use_abs_pos_embed: |
||||
self.absolute_pos_embed.requires_grad = False |
||||
self.drop_after_pos.eval() |
||||
|
||||
for i in range(1, self.frozen_stages + 1): |
||||
|
||||
if (i - 1) in self.out_indices: |
||||
norm_layer = getattr(self, f'norm{i-1}') |
||||
norm_layer.eval() |
||||
for param in norm_layer.parameters(): |
||||
param.requires_grad = False |
||||
|
||||
m = self.stages[i - 1] |
||||
m.eval() |
||||
for param in m.parameters(): |
||||
param.requires_grad = False |
||||
|
||||
def init_weights(self): |
||||
logger = get_root_logger() |
||||
if self.init_cfg is None: |
||||
logger.warn(f'No pre-trained weights for ' |
||||
f'{self.__class__.__name__}, ' |
||||
f'training start from scratch') |
||||
if self.use_abs_pos_embed: |
||||
trunc_normal_init(self.absolute_pos_embed, std=0.02) |
||||
for m in self.modules(): |
||||
if isinstance(m, nn.Linear): |
||||
trunc_normal_init(m.weight, std=.02) |
||||
if m.bias is not None: |
||||
constant_init(m.bias, 0) |
||||
elif isinstance(m, nn.LayerNorm): |
||||
constant_init(m.bias, 0) |
||||
constant_init(m.weight, 1.0) |
||||
else: |
||||
assert 'checkpoint' in self.init_cfg, f'Only support ' \ |
||||
f'specify `Pretrained` in ' \ |
||||
f'`init_cfg` in ' \ |
||||
f'{self.__class__.__name__} ' |
||||
ckpt = _load_checkpoint( |
||||
self.init_cfg.checkpoint, logger=logger, map_location='cpu') |
||||
if 'state_dict' in ckpt: |
||||
_state_dict = ckpt['state_dict'] |
||||
elif 'model' in ckpt: |
||||
_state_dict = ckpt['model'] |
||||
else: |
||||
_state_dict = ckpt |
||||
if self.convert_weights: |
||||
# supported loading weight from original repo, |
||||
_state_dict = swin_converter(_state_dict) |
||||
|
||||
state_dict = OrderedDict() |
||||
for k, v in _state_dict.items(): |
||||
if k.startswith('backbone.'): |
||||
state_dict[k[9:]] = v |
||||
|
||||
# strip prefix of state_dict |
||||
if list(state_dict.keys())[0].startswith('module.'): |
||||
state_dict = {k[7:]: v for k, v in state_dict.items()} |
||||
|
||||
# reshape absolute position embedding |
||||
if state_dict.get('absolute_pos_embed') is not None: |
||||
absolute_pos_embed = state_dict['absolute_pos_embed'] |
||||
N1, L, C1 = absolute_pos_embed.size() |
||||
N2, C2, H, W = self.absolute_pos_embed.size() |
||||
if N1 != N2 or C1 != C2 or L != H * W: |
||||
logger.warning('Error in loading absolute_pos_embed, pass') |
||||
else: |
||||
state_dict['absolute_pos_embed'] = absolute_pos_embed.view( |
||||
N2, H, W, C2).permute(0, 3, 1, 2).contiguous() |
||||
|
||||
# interpolate position bias table if needed |
||||
relative_position_bias_table_keys = [ |
||||
k for k in state_dict.keys() |
||||
if 'relative_position_bias_table' in k |
||||
] |
||||
for table_key in relative_position_bias_table_keys: |
||||
table_pretrained = state_dict[table_key] |
||||
table_current = self.state_dict()[table_key] |
||||
L1, nH1 = table_pretrained.size() |
||||
L2, nH2 = table_current.size() |
||||
if nH1 != nH2: |
||||
logger.warning(f'Error in loading {table_key}, pass') |
||||
elif L1 != L2: |
||||
S1 = int(L1**0.5) |
||||
S2 = int(L2**0.5) |
||||
table_pretrained_resized = F.interpolate( |
||||
table_pretrained.permute(1, 0).reshape(1, nH1, S1, S1), |
||||
size=(S2, S2), |
||||
mode='bicubic') |
||||
state_dict[table_key] = table_pretrained_resized.view( |
||||
nH2, L2).permute(1, 0).contiguous() |
||||
|
||||
# load state_dict |
||||
self.load_state_dict(state_dict, False) |
||||
|
||||
def forward(self, x): |
||||
x, hw_shape = self.patch_embed(x) |
||||
|
||||
if self.use_abs_pos_embed: |
||||
x = x + self.absolute_pos_embed |
||||
x = self.drop_after_pos(x) |
||||
|
||||
outs = [] |
||||
for i, stage in enumerate(self.stages): |
||||
x, hw_shape, out, out_hw_shape = stage(x, hw_shape) |
||||
if i in self.out_indices: |
||||
norm_layer = getattr(self, f'norm{i}') |
||||
out = norm_layer(out) |
||||
out = out.view(-1, *out_hw_shape, |
||||
self.num_features[i]).permute(0, 3, 1, |
||||
2).contiguous() |
||||
outs.append(out) |
||||
|
||||
return outs |
@ -0,0 +1,62 @@ |
||||
# Copyright (c) OpenMMLab. All rights reserved. |
||||
|
||||
# This script consists of several convert functions which |
||||
# can modify the weights of model in original repo to be |
||||
# pre-trained weights. |
||||
|
||||
from collections import OrderedDict |
||||
|
||||
|
||||
def swin_converter(ckpt): |
||||
|
||||
new_ckpt = OrderedDict() |
||||
|
||||
def correct_unfold_reduction_order(x): |
||||
out_channel, in_channel = x.shape |
||||
x = x.reshape(out_channel, 4, in_channel // 4) |
||||
x = x[:, [0, 2, 1, 3], :].transpose(1, |
||||
2).reshape(out_channel, in_channel) |
||||
return x |
||||
|
||||
def correct_unfold_norm_order(x): |
||||
in_channel = x.shape[0] |
||||
x = x.reshape(4, in_channel // 4) |
||||
x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel) |
||||
return x |
||||
|
||||
for k, v in ckpt.items(): |
||||
if k.startswith('head'): |
||||
continue |
||||
elif k.startswith('layers'): |
||||
new_v = v |
||||
if 'attn.' in k: |
||||
new_k = k.replace('attn.', 'attn.w_msa.') |
||||
elif 'mlp.' in k: |
||||
if 'mlp.fc1.' in k: |
||||
new_k = k.replace('mlp.fc1.', 'ffn.layers.0.0.') |
||||
elif 'mlp.fc2.' in k: |
||||
new_k = k.replace('mlp.fc2.', 'ffn.layers.1.') |
||||
else: |
||||
new_k = k.replace('mlp.', 'ffn.') |
||||
elif 'downsample' in k: |
||||
new_k = k |
||||
if 'reduction.' in k: |
||||
new_v = correct_unfold_reduction_order(v) |
||||
elif 'norm.' in k: |
||||
new_v = correct_unfold_norm_order(v) |
||||
else: |
||||
new_k = k |
||||
new_k = new_k.replace('layers', 'stages', 1) |
||||
elif k.startswith('patch_embed'): |
||||
new_v = v |
||||
if 'proj' in k: |
||||
new_k = k.replace('proj', 'projection') |
||||
else: |
||||
new_k = k |
||||
else: |
||||
new_v = v |
||||
new_k = k |
||||
|
||||
new_ckpt[new_k] = new_v |
||||
|
||||
return new_ckpt |
@ -0,0 +1,82 @@ |
||||
import pytest |
||||
import torch |
||||
|
||||
from mmdet.models.backbones.swin import SwinBlock, SwinTransformer |
||||
|
||||
|
||||
def test_swin_block(): |
||||
# test SwinBlock structure and forward |
||||
block = SwinBlock(embed_dims=64, num_heads=4, feedforward_channels=256) |
||||
assert block.ffn.embed_dims == 64 |
||||
assert block.attn.w_msa.num_heads == 4 |
||||
assert block.ffn.feedforward_channels == 256 |
||||
x = torch.randn(1, 56 * 56, 64) |
||||
x_out = block(x, (56, 56)) |
||||
assert x_out.shape == torch.Size([1, 56 * 56, 64]) |
||||
|
||||
# Test BasicBlock with checkpoint forward |
||||
block = SwinBlock( |
||||
embed_dims=64, num_heads=4, feedforward_channels=256, with_cp=True) |
||||
assert block.with_cp |
||||
x = torch.randn(1, 56 * 56, 64) |
||||
x_out = block(x, (56, 56)) |
||||
assert x_out.shape == torch.Size([1, 56 * 56, 64]) |
||||
|
||||
|
||||
def test_swin_transformer(): |
||||
"""Test Swin Transformer backbone.""" |
||||
|
||||
with pytest.raises(TypeError): |
||||
# Pretrained arg must be str or None. |
||||
SwinTransformer(pretrained=123) |
||||
|
||||
with pytest.raises(AssertionError): |
||||
# Because swin uses non-overlapping patch embed, so the stride of patch |
||||
# embed must be equal to patch size. |
||||
SwinTransformer(strides=(2, 2, 2, 2), patch_size=4) |
||||
|
||||
# test pretrained image size |
||||
with pytest.raises(AssertionError): |
||||
SwinTransformer(pretrain_img_size=(224, 224, 224)) |
||||
|
||||
# Test absolute position embedding |
||||
temp = torch.randn((1, 3, 224, 224)) |
||||
model = SwinTransformer(pretrain_img_size=224, use_abs_pos_embed=True) |
||||
model.init_weights() |
||||
model(temp) |
||||
|
||||
# Test patch norm |
||||
model = SwinTransformer(patch_norm=False) |
||||
model(temp) |
||||
|
||||
# Test normal inference |
||||
temp = torch.randn((1, 3, 512, 512)) |
||||
model = SwinTransformer() |
||||
outs = model(temp) |
||||
assert outs[0].shape == (1, 96, 128, 128) |
||||
assert outs[1].shape == (1, 192, 64, 64) |
||||
assert outs[2].shape == (1, 384, 32, 32) |
||||
assert outs[3].shape == (1, 768, 16, 16) |
||||
|
||||
# Test abnormal inference size |
||||
temp = torch.randn((1, 3, 511, 511)) |
||||
model = SwinTransformer() |
||||
outs = model(temp) |
||||
assert outs[0].shape == (1, 96, 128, 128) |
||||
assert outs[1].shape == (1, 192, 64, 64) |
||||
assert outs[2].shape == (1, 384, 32, 32) |
||||
assert outs[3].shape == (1, 768, 16, 16) |
||||
|
||||
# Test abnormal inference size |
||||
temp = torch.randn((1, 3, 112, 137)) |
||||
model = SwinTransformer() |
||||
outs = model(temp) |
||||
assert outs[0].shape == (1, 96, 28, 35) |
||||
assert outs[1].shape == (1, 192, 14, 18) |
||||
assert outs[2].shape == (1, 384, 7, 9) |
||||
assert outs[3].shape == (1, 768, 4, 5) |
||||
|
||||
model = SwinTransformer(frozen_stages=4) |
||||
model.train() |
||||
for p in model.parameters(): |
||||
assert not p.requires_grad |
Loading…
Reference in new issue