We list some common troubles faced by many users and their corresponding solutions here. Feel free to enrich the list if you find any frequent issues and have ways to help others to solve them. If the contents here do not cover your issue, please create an issue using the [provided templates](https://github.com/open-mmlab/mmdetection/blob/master/.github/ISSUE_TEMPLATE/error-report.md) and make sure you fill in all required information in the template.
We list some common troubles faced by many users and their corresponding solutions here. Feel free to enrich the list if you find any frequent issues and have ways to help others to solve them. If the contents here do not cover your issue, please create an issue using the [provided templates](https://github.com/open-mmlab/mmdetection/blob/master/.github/ISSUE_TEMPLATE/error-report.md/) and make sure you fill in all required information in the template.
@ -218,7 +218,7 @@ We also train [Faster R-CNN](https://github.com/open-mmlab/mmdetection/blob/mast
We provide [analyze_logs.py](https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/analyze_logs.py) to get average time of iteration in training. You can find examples in [Log Analysis](https://mmdetection.readthedocs.io/en/latest/useful_tools.html#log-analysis).
We provide [analyze_logs.py](https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/analyze_logs.py) to get average time of iteration in training. You can find examples in [Log Analysis](https://mmdetection.readthedocs.io/en/latest/useful_tools.html#log-analysis).
We compare the training speed of Mask R-CNN with some other popular frameworks (The data is copied from [detectron2](https://github.com/facebookresearch/detectron2/blob/master/docs/notes/benchmarks.md)).
We compare the training speed of Mask R-CNN with some other popular frameworks (The data is copied from [detectron2](https://github.com/facebookresearch/detectron2/blob/master/docs/notes/benchmarks.md/)).
For mmdetection, we benchmark with [mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py](https://github.com/open-mmlab/mmdetection/blob/master/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py), which should have the same setting with [mask_rcnn_R_50_FPN_noaug_1x.yaml](https://github.com/facebookresearch/detectron2/blob/master/configs/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x.yaml) of detectron2.
For mmdetection, we benchmark with [mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py](https://github.com/open-mmlab/mmdetection/blob/master/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py), which should have the same setting with [mask_rcnn_R_50_FPN_noaug_1x.yaml](https://github.com/facebookresearch/detectron2/blob/master/configs/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x.yaml) of detectron2.
We also provide the [checkpoint](https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug_compare_20200518-10127928.pth) and [training log](https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug_20200518_105755.log.json) for reference. The throughput is computed as the average throughput in iterations 100-500 to skip GPU warmup time.
We also provide the [checkpoint](https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug_compare_20200518-10127928.pth) and [training log](https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug_20200518_105755.log.json) for reference. The throughput is computed as the average throughput in iterations 100-500 to skip GPU warmup time.
1. Please refer to [get_started.md](https://mmdetection.readthedocs.io/en/latest/get_started.html) for installation of MMCV and MMDetection from source.
1. Please refer to [get_started.md](https://mmdetection.readthedocs.io/en/latest/get_started.html) for installation of MMCV and MMDetection from source.
2. Please refer to [ONNXRuntime in mmcv](https://mmcv.readthedocs.io/en/latest/onnxruntime_op.html) and [TensorRT plugin in mmcv](https://github.com/open-mmlab/mmcv/blob/master/docs/tensorrt_plugin.md) to install `mmcv-full` with ONNXRuntime custom ops and TensorRT plugins.
2. Please refer to [ONNXRuntime in mmcv](https://mmcv.readthedocs.io/en/latest/onnxruntime_op.html) and [TensorRT plugin in mmcv](https://github.com/open-mmlab/mmcv/blob/master/docs/tensorrt_plugin.md/) to install `mmcv-full` with ONNXRuntime custom ops and TensorRT plugins.
3. Use our tool [pytorch2onnx](https://mmdetection.readthedocs.io/en/latest/tutorials/pytorch2onnx.html) to convert the model from PyTorch to ONNX.
3. Use our tool [pytorch2onnx](https://mmdetection.readthedocs.io/en/latest/tutorials/pytorch2onnx.html) to convert the model from PyTorch to ONNX.
[Read the docs](https://github.com/pytorch/serve/blob/072f5d088cce9bb64b2a18af065886c9b01b317b/docs/rest_api.md) about the Inference (8080), Management (8081) and Metrics (8082) APis
[Read the docs](https://github.com/pytorch/serve/blob/072f5d088cce9bb64b2a18af065886c9b01b317b/docs/rest_api.md/) about the Inference (8080), Management (8081) and Metrics (8082) APis