[Docs] Add Chinese version of customize_models (#6725)

* Update customize_models.md

* Update customize_models.md

* Update customize_models.md

* fix some problems based on review

* fix a wrong word

* [Fix] fix some wrong description
pull/6998/head^2
Jiahui 3 years ago committed by GitHub
parent 39135a7190
commit 3a00ade9c3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 355
      docs/zh_cn/tutorials/customize_models.md

@ -1 +1,356 @@
# 教程 4: 自定义模型
我们简单地把模型的各个组件分为五类:
- 主干网络 (backbone):通常是一个用来提取特征图 (feature map) 的全卷积网络 (FCN network),例如:ResNet, MobileNet。
- Neck:主干网络和 Head 之间的连接部分,例如:FPN, PAFPN。
- Head:用于具体任务的组件,例如:边界框预测和掩码预测。
- 区域提取器 (roi extractor):从特征图中提取 RoI 特征,例如:RoI Align。
- 损失 (loss):在 Head 组件中用于计算损失的部分,例如:FocalLoss, L1Loss, GHMLoss.
## 开发新的组件
### 添加一个新的主干网络
这里,我们以 MobileNet 为例来展示如何开发新组件。
#### 1. 定义一个新的主干网络(以 MobileNet 为例)
新建一个文件 `mmdet/models/backbones/mobilenet.py`
```python
import torch.nn as nn
from ..builder import BACKBONES
@BACKBONES.register_module()
class MobileNet(nn.Module):
def __init__(self, arg1, arg2):
pass
def forward(self, x): # should return a tuple
pass
```
#### 2. 导入该模块
你可以添加下述代码到 `mmdet/models/backbones/__init__.py`
```python
from .mobilenet import MobileNet
```
或添加:
```python
custom_imports = dict(
imports=['mmdet.models.backbones.mobilenet'],
allow_failed_imports=False)
```
到配置文件以避免原始代码被修改。
#### 3. 在你的配置文件中使用该主干网络
```python
model = dict(
...
backbone=dict(
type='MobileNet',
arg1=xxx,
arg2=xxx),
...
```
### 添加新的 Neck
#### 1. 定义一个 Neck(以 PAFPN 为例)
新建一个文件 `mmdet/models/necks/pafpn.py`
```python
from ..builder import NECKS
@NECKS.register_module()
class PAFPN(nn.Module):
def __init__(self,
in_channels,
out_channels,
num_outs,
start_level=0,
end_level=-1,
add_extra_convs=False):
pass
def forward(self, inputs):
# implementation is ignored
pass
```
#### 2. 导入该模块
你可以添加下述代码到 `mmdet/models/necks/__init__.py`
```python
from .pafpn import PAFPN
```
或添加:
```python
custom_imports = dict(
imports=['mmdet.models.necks.pafpn.py'],
allow_failed_imports=False)
```
到配置文件以避免原始代码被修改。
#### 3. 修改配置文件
```python
neck=dict(
type='PAFPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5)
```
### 添加新的 Head
我们以 [Double Head R-CNN](https://arxiv.org/abs/1904.06493) 为例来展示如何添加一个新的 Head。
首先,添加一个新的 bbox head 到 `mmdet/models/roi_heads/bbox_heads/double_bbox_head.py`
Double Head R-CNN 在目标检测上实现了一个新的 bbox head。为了实现 bbox head,我们需要使用如下的新模块中三个函数。
```python
from mmdet.models.builder import HEADS
from .bbox_head import BBoxHead
@HEADS.register_module()
class DoubleConvFCBBoxHead(BBoxHead):
r"""Bbox head used in Double-Head R-CNN
/-> cls
/-> shared convs ->
\-> reg
roi features
/-> cls
\-> shared fc ->
\-> reg
""" # noqa: W605
def __init__(self,
num_convs=0,
num_fcs=0,
conv_out_channels=1024,
fc_out_channels=1024,
conv_cfg=None,
norm_cfg=dict(type='BN'),
**kwargs):
kwargs.setdefault('with_avg_pool', True)
super(DoubleConvFCBBoxHead, self).__init__(**kwargs)
def forward(self, x_cls, x_reg):
```
然后,如有必要,实现一个新的 bbox head。我们打算从 `StandardRoIHead` 来继承新的 `DoubleHeadRoIHead`。我们可以发现 `StandardRoIHead` 已经实现了下述函数。
```python
import torch
from mmdet.core import bbox2result, bbox2roi, build_assigner, build_sampler
from ..builder import HEADS, build_head, build_roi_extractor
from .base_roi_head import BaseRoIHead
from .test_mixins import BBoxTestMixin, MaskTestMixin
@HEADS.register_module()
class StandardRoIHead(BaseRoIHead, BBoxTestMixin, MaskTestMixin):
"""Simplest base roi head including one bbox head and one mask head.
"""
def init_assigner_sampler(self):
def init_bbox_head(self, bbox_roi_extractor, bbox_head):
def init_mask_head(self, mask_roi_extractor, mask_head):
def forward_dummy(self, x, proposals):
def forward_train(self,
x,
img_metas,
proposal_list,
gt_bboxes,
gt_labels,
gt_bboxes_ignore=None,
gt_masks=None):
def _bbox_forward(self, x, rois):
def _bbox_forward_train(self, x, sampling_results, gt_bboxes, gt_labels,
img_metas):
def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks,
img_metas):
def _mask_forward(self, x, rois=None, pos_inds=None, bbox_feats=None):
def simple_test(self,
x,
proposal_list,
img_metas,
proposals=None,
rescale=False):
"""Test without augmentation."""
```
Double Head 的修改主要在 bbox_forward 的逻辑中,且它从 `StandardRoIHead` 中继承了其他逻辑。在 `mmdet/models/roi_heads/double_roi_head.py` 中,我们用下述代码实现新的 bbox head:
```python
from ..builder import HEADS
from .standard_roi_head import StandardRoIHead
@HEADS.register_module()
class DoubleHeadRoIHead(StandardRoIHead):
"""RoI head for Double Head RCNN
https://arxiv.org/abs/1904.06493
"""
def __init__(self, reg_roi_scale_factor, **kwargs):
super(DoubleHeadRoIHead, self).__init__(**kwargs)
self.reg_roi_scale_factor = reg_roi_scale_factor
def _bbox_forward(self, x, rois):
bbox_cls_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs], rois)
bbox_reg_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs],
rois,
roi_scale_factor=self.reg_roi_scale_factor)
if self.with_shared_head:
bbox_cls_feats = self.shared_head(bbox_cls_feats)
bbox_reg_feats = self.shared_head(bbox_reg_feats)
cls_score, bbox_pred = self.bbox_head(bbox_cls_feats, bbox_reg_feats)
bbox_results = dict(
cls_score=cls_score,
bbox_pred=bbox_pred,
bbox_feats=bbox_cls_feats)
return bbox_results
```
最终,用户需要把该模块添加到 `mmdet/models/bbox_heads/__init__.py``mmdet/models/roi_heads/__init__.py` 以使相关的注册表可以找到并加载他们。
或者,用户可以添加:
```python
custom_imports=dict(
imports=['mmdet.models.roi_heads.double_roi_head', 'mmdet.models.bbox_heads.double_bbox_head'])
```
到配置文件并实现相同的目的。
Double Head R-CNN 的配置文件如下:
```python
_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
model = dict(
roi_head=dict(
type='DoubleHeadRoIHead',
reg_roi_scale_factor=1.3,
bbox_head=dict(
_delete_=True,
type='DoubleConvFCBBoxHead',
num_convs=4,
num_fcs=2,
in_channels=256,
conv_out_channels=1024,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=2.0))))
```
从 MMDetection 2.0 版本起,配置系统支持继承配置以使用户可以专注于修改。
Double Head R-CNN 主要使用了一个新的 DoubleHeadRoIHead 和一个新的 `DoubleConvFCBBoxHead`,参数需要根据每个模块的 `__init__` 函数来设置。
### 添加新的损失
假设你想添加一个新的损失 `MyLoss` 用于边界框回归。
为了添加一个新的损失函数,用户需要在 `mmdet/models/losses/my_loss.py` 中实现。
装饰器 `weighted_loss` 可以使损失每个部分加权。
```python
import torch
import torch.nn as nn
from ..builder import LOSSES
from .utils import weighted_loss
@weighted_loss
def my_loss(pred, target):
assert pred.size() == target.size() and target.numel() > 0
loss = torch.abs(pred - target)
return loss
@LOSSES.register_module()
class MyLoss(nn.Module):
def __init__(self, reduction='mean', loss_weight=1.0):
super(MyLoss, self).__init__()
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None):
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
loss_bbox = self.loss_weight * my_loss(
pred, target, weight, reduction=reduction, avg_factor=avg_factor)
return loss_bbox
```
然后,用户需要把它加到 `mmdet/models/losses/__init__.py`
```python
from .my_loss import MyLoss, my_loss
```
或者,你可以添加:
```python
custom_imports=dict(
imports=['mmdet.models.losses.my_loss'])
```
到配置文件来实现相同的目的。
如使用,请修改 `loss_xxx` 字段。
因为 MyLoss 是用于回归的,你需要在 Head 中修改 `loss_xxx` 字段。
```python
loss_bbox=dict(type='MyLoss', loss_weight=1.0))
```

Loading…
Cancel
Save