|
|
|
@ -120,7 +120,7 @@ class Resize(object): |
|
|
|
|
results['scale_idx'] = scale_idx |
|
|
|
|
|
|
|
|
|
def _resize_img(self, results): |
|
|
|
|
for key in results.get('img_fields', []): |
|
|
|
|
for key in results.get('img_fields', ['img']): |
|
|
|
|
if self.keep_ratio: |
|
|
|
|
img, scale_factor = mmcv.imrescale( |
|
|
|
|
results[key], results['scale'], return_scale=True) |
|
|
|
@ -236,7 +236,7 @@ class RandomFlip(object): |
|
|
|
|
results['flip_direction'] = self.direction |
|
|
|
|
if results['flip']: |
|
|
|
|
# flip image |
|
|
|
|
for key in results.get('img_fields', []): |
|
|
|
|
for key in results.get('img_fields', ['img']): |
|
|
|
|
results[key] = mmcv.imflip( |
|
|
|
|
results[key], direction=results['flip_direction']) |
|
|
|
|
# flip bboxes |
|
|
|
@ -280,7 +280,7 @@ class Pad(object): |
|
|
|
|
assert size is None or size_divisor is None |
|
|
|
|
|
|
|
|
|
def _pad_img(self, results): |
|
|
|
|
for key in results.get('img_fields', []): |
|
|
|
|
for key in results.get('img_fields', ['img']): |
|
|
|
|
if self.size is not None: |
|
|
|
|
padded_img = mmcv.impad(results[key], self.size, self.pad_val) |
|
|
|
|
elif self.size_divisor is not None: |
|
|
|
@ -332,7 +332,7 @@ class Normalize(object): |
|
|
|
|
self.to_rgb = to_rgb |
|
|
|
|
|
|
|
|
|
def __call__(self, results): |
|
|
|
|
for key in results.get('img_fields', []): |
|
|
|
|
for key in results.get('img_fields', ['img']): |
|
|
|
|
results[key] = mmcv.imnormalize(results[key], self.mean, self.std, |
|
|
|
|
self.to_rgb) |
|
|
|
|
results['img_norm_cfg'] = dict( |
|
|
|
@ -358,7 +358,7 @@ class RandomCrop(object): |
|
|
|
|
self.crop_size = crop_size |
|
|
|
|
|
|
|
|
|
def __call__(self, results): |
|
|
|
|
for key in results.get('img_fields', []): |
|
|
|
|
for key in results.get('img_fields', ['img']): |
|
|
|
|
img = results[key] |
|
|
|
|
margin_h = max(img.shape[0] - self.crop_size[0], 0) |
|
|
|
|
margin_w = max(img.shape[1] - self.crop_size[1], 0) |
|
|
|
|