|
|
|
# model settings
|
|
|
|
model = dict(
|
|
|
|
type='RPN',
|
|
|
|
backbone=dict(
|
|
|
|
type='ResNet',
|
|
|
|
depth=50,
|
|
|
|
num_stages=4,
|
|
|
|
out_indices=(0, 1, 2, 3),
|
|
|
|
frozen_stages=1,
|
|
|
|
norm_cfg=dict(type='BN', requires_grad=True),
|
|
|
|
norm_eval=True,
|
|
|
|
style='pytorch',
|
|
|
|
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
|
|
|
neck=dict(
|
|
|
|
type='FPN',
|
|
|
|
in_channels=[256, 512, 1024, 2048],
|
|
|
|
out_channels=256,
|
|
|
|
num_outs=5),
|
|
|
|
rpn_head=dict(
|
|
|
|
type='RPNHead',
|
|
|
|
in_channels=256,
|
|
|
|
feat_channels=256,
|
|
|
|
anchor_generator=dict(
|
|
|
|
type='AnchorGenerator',
|
|
|
|
scales=[8],
|
|
|
|
ratios=[0.5, 1.0, 2.0],
|
|
|
|
strides=[4, 8, 16, 32, 64]),
|
|
|
|
bbox_coder=dict(
|
|
|
|
type='DeltaXYWHBBoxCoder',
|
|
|
|
target_means=[.0, .0, .0, .0],
|
|
|
|
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
|
|
|
loss_cls=dict(
|
|
|
|
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
|
|
|
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
|
|
|
# model training and testing settings
|
|
|
|
train_cfg=dict(
|
|
|
|
rpn=dict(
|
|
|
|
assigner=dict(
|
|
|
|
type='MaxIoUAssigner',
|
|
|
|
pos_iou_thr=0.7,
|
|
|
|
neg_iou_thr=0.3,
|
|
|
|
min_pos_iou=0.3,
|
|
|
|
ignore_iof_thr=-1),
|
|
|
|
sampler=dict(
|
|
|
|
type='RandomSampler',
|
|
|
|
num=256,
|
|
|
|
pos_fraction=0.5,
|
|
|
|
neg_pos_ub=-1,
|
|
|
|
add_gt_as_proposals=False),
|
|
|
|
allowed_border=0,
|
|
|
|
pos_weight=-1,
|
|
|
|
debug=False)),
|
|
|
|
test_cfg=dict(
|
|
|
|
rpn=dict(
|
|
|
|
nms_pre=2000,
|
|
|
|
max_per_img=1000,
|
|
|
|
nms=dict(type='nms', iou_threshold=0.7),
|
|
|
|
min_bbox_size=0)))
|