|
|
|
# model settings
|
|
|
|
model = dict(
|
|
|
|
type='RetinaNet',
|
|
|
|
backbone=dict(
|
|
|
|
type='ResNet',
|
|
|
|
depth=50,
|
|
|
|
num_stages=4,
|
|
|
|
out_indices=(0, 1, 2, 3),
|
|
|
|
frozen_stages=1,
|
|
|
|
norm_cfg=dict(type='BN', requires_grad=True),
|
|
|
|
norm_eval=True,
|
|
|
|
style='pytorch',
|
|
|
|
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
|
|
|
neck=dict(
|
|
|
|
type='FPN',
|
|
|
|
in_channels=[256, 512, 1024, 2048],
|
|
|
|
out_channels=256,
|
|
|
|
start_level=1,
|
|
|
|
add_extra_convs='on_input',
|
|
|
|
num_outs=5),
|
|
|
|
bbox_head=dict(
|
|
|
|
type='RetinaHead',
|
|
|
|
num_classes=80,
|
|
|
|
in_channels=256,
|
|
|
|
stacked_convs=4,
|
|
|
|
feat_channels=256,
|
|
|
|
anchor_generator=dict(
|
|
|
|
type='AnchorGenerator',
|
|
|
|
octave_base_scale=4,
|
|
|
|
scales_per_octave=3,
|
|
|
|
ratios=[0.5, 1.0, 2.0],
|
|
|
|
strides=[8, 16, 32, 64, 128]),
|
|
|
|
bbox_coder=dict(
|
|
|
|
type='DeltaXYWHBBoxCoder',
|
|
|
|
target_means=[.0, .0, .0, .0],
|
|
|
|
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
|
|
|
loss_cls=dict(
|
|
|
|
type='FocalLoss',
|
|
|
|
use_sigmoid=True,
|
|
|
|
gamma=2.0,
|
|
|
|
alpha=0.25,
|
|
|
|
loss_weight=1.0),
|
|
|
|
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
|
|
|
# model training and testing settings
|
|
|
|
train_cfg=dict(
|
|
|
|
assigner=dict(
|
|
|
|
type='MaxIoUAssigner',
|
|
|
|
pos_iou_thr=0.5,
|
|
|
|
neg_iou_thr=0.4,
|
|
|
|
min_pos_iou=0,
|
|
|
|
ignore_iof_thr=-1),
|
|
|
|
allowed_border=-1,
|
|
|
|
pos_weight=-1,
|
|
|
|
debug=False),
|
|
|
|
test_cfg=dict(
|
|
|
|
nms_pre=1000,
|
|
|
|
min_bbox_size=0,
|
|
|
|
score_thr=0.05,
|
|
|
|
nms=dict(type='nms', iou_threshold=0.5),
|
|
|
|
max_per_img=100))
|