The Meson Build System http://mesonbuild.com/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

594 lines
27 KiB

# Copyright 2016-2017 The Meson development team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This class contains the basic functionality needed to run any interpreter
# or an interpreter-based tool.
from .. import mparser, mesonlib
from .. import environment
from .baseobjects import (
InterpreterObject,
MesonInterpreterObject,
MutableInterpreterObject,
InterpreterObjectTypeVar,
ObjectHolder,
IterableObject,
TYPE_var,
TYPE_kwargs,
HoldableTypes,
)
from .exceptions import (
InterpreterException,
InvalidCode,
InvalidArguments,
SubdirDoneRequest,
ContinueRequest,
BreakRequest
)
from .decorators import FeatureNew
from .disabler import Disabler, is_disabled
from .helpers import default_resolve_key, flatten, resolve_second_level_holders
from .operator import MesonOperator
from ._unholder import _unholder
import os, copy, re, pathlib
import typing as T
import textwrap
if T.TYPE_CHECKING:
# T.cast is not handled by flake8 to detect quoted annotation use
# see https://github.com/PyCQA/pyflakes/pull/632
from ..interpreter import Interpreter # noqa
HolderMapType = T.Dict[
T.Union[
T.Type[mesonlib.HoldableObject],
T.Type[int],
T.Type[bool],
T.Type[str],
T.Type[list],
T.Type[dict],
],
# For some reason, this has to be a callable and can't just be ObjectHolder[InterpreterObjectTypeVar]
T.Callable[[InterpreterObjectTypeVar, 'Interpreter'], ObjectHolder[InterpreterObjectTypeVar]]
]
FunctionType = T.Dict[
str,
T.Callable[[mparser.BaseNode, T.List[TYPE_var], T.Dict[str, TYPE_var]], TYPE_var]
]
class InterpreterBase:
def __init__(self, source_root: str, subdir: str, subproject: str):
self.source_root = source_root
self.funcs: FunctionType = {}
self.builtin: T.Dict[str, InterpreterObject] = {}
# Holder maps store a mapping from an HoldableObject to a class ObjectHolder
self.holder_map: HolderMapType = {}
self.bound_holder_map: HolderMapType = {}
self.subdir = subdir
self.root_subdir = subdir
self.subproject = subproject
self.variables: T.Dict[str, InterpreterObject] = {}
self.argument_depth = 0
self.current_lineno = -1
# Current node set during a function call. This can be used as location
# when printing a warning message during a method call.
self.current_node = None # type: mparser.BaseNode
# This is set to `version_string` when this statement is evaluated:
# meson.version().compare_version(version_string)
# If it was part of a if-clause, it is used to temporally override the
# current meson version target within that if-block.
self.tmp_meson_version = None # type: T.Optional[str]
def load_root_meson_file(self) -> None:
mesonfile = os.path.join(self.source_root, self.subdir, environment.build_filename)
if not os.path.isfile(mesonfile):
raise InvalidArguments('Missing Meson file in %s' % mesonfile)
with open(mesonfile, encoding='utf-8') as mf:
code = mf.read()
if code.isspace():
raise InvalidCode('Builder file is empty.')
assert isinstance(code, str)
try:
self.ast = mparser.Parser(code, mesonfile).parse()
except mesonlib.MesonException as me:
me.file = mesonfile
raise me
def parse_project(self) -> None:
"""
Parses project() and initializes languages, compilers etc. Do this
early because we need this before we parse the rest of the AST.
"""
self.evaluate_codeblock(self.ast, end=1)
def sanity_check_ast(self) -> None:
if not isinstance(self.ast, mparser.CodeBlockNode):
raise InvalidCode('AST is of invalid type. Possibly a bug in the parser.')
if not self.ast.lines:
raise InvalidCode('No statements in code.')
first = self.ast.lines[0]
if not isinstance(first, mparser.FunctionNode) or first.func_name != 'project':
p = pathlib.Path(self.source_root).resolve()
found = p
for parent in p.parents:
if (parent / 'meson.build').is_file():
with open(parent / 'meson.build', encoding='utf-8') as f:
if f.readline().startswith('project('):
found = parent
break
else:
break
error = 'first statement must be a call to project()'
if found != p:
raise InvalidCode(f'Not the project root: {error}\n\nDid you mean to run meson from the directory: "{found}"?')
else:
raise InvalidCode(f'Invalid source tree: {error}')
def run(self) -> None:
# Evaluate everything after the first line, which is project() because
# we already parsed that in self.parse_project()
try:
self.evaluate_codeblock(self.ast, start=1)
except SubdirDoneRequest:
pass
def evaluate_codeblock(self, node: mparser.CodeBlockNode, start: int = 0, end: T.Optional[int] = None) -> None:
if node is None:
return
if not isinstance(node, mparser.CodeBlockNode):
e = InvalidCode('Tried to execute a non-codeblock. Possibly a bug in the parser.')
e.lineno = node.lineno
e.colno = node.colno
raise e
statements = node.lines[start:end]
i = 0
while i < len(statements):
cur = statements[i]
try:
self.current_lineno = cur.lineno
self.evaluate_statement(cur)
except Exception as e:
if getattr(e, 'lineno', None) is None:
# We are doing the equivalent to setattr here and mypy does not like it
e.lineno = cur.lineno # type: ignore
e.colno = cur.colno # type: ignore
e.file = os.path.join(self.source_root, self.subdir, environment.build_filename) # type: ignore
raise e
i += 1 # In THE FUTURE jump over blocks and stuff.
def evaluate_statement(self, cur: mparser.BaseNode) -> T.Optional[InterpreterObject]:
self.current_node = cur
if isinstance(cur, mparser.FunctionNode):
return self.function_call(cur)
elif isinstance(cur, mparser.AssignmentNode):
self.assignment(cur)
elif isinstance(cur, mparser.MethodNode):
return self.method_call(cur)
elif isinstance(cur, mparser.StringNode):
return self._holderify(cur.value)
elif isinstance(cur, mparser.BooleanNode):
return self._holderify(cur.value)
elif isinstance(cur, mparser.IfClauseNode):
return self.evaluate_if(cur)
elif isinstance(cur, mparser.IdNode):
return self.get_variable(cur.value)
elif isinstance(cur, mparser.ComparisonNode):
return self.evaluate_comparison(cur)
elif isinstance(cur, mparser.ArrayNode):
return self.evaluate_arraystatement(cur)
elif isinstance(cur, mparser.DictNode):
return self.evaluate_dictstatement(cur)
elif isinstance(cur, mparser.NumberNode):
return self._holderify(cur.value)
elif isinstance(cur, mparser.AndNode):
return self.evaluate_andstatement(cur)
elif isinstance(cur, mparser.OrNode):
return self.evaluate_orstatement(cur)
elif isinstance(cur, mparser.NotNode):
return self.evaluate_notstatement(cur)
elif isinstance(cur, mparser.UMinusNode):
return self.evaluate_uminusstatement(cur)
elif isinstance(cur, mparser.ArithmeticNode):
return self.evaluate_arithmeticstatement(cur)
elif isinstance(cur, mparser.ForeachClauseNode):
self.evaluate_foreach(cur)
elif isinstance(cur, mparser.PlusAssignmentNode):
self.evaluate_plusassign(cur)
elif isinstance(cur, mparser.IndexNode):
return self.evaluate_indexing(cur)
elif isinstance(cur, mparser.TernaryNode):
return self.evaluate_ternary(cur)
elif isinstance(cur, mparser.FormatStringNode):
return self.evaluate_fstring(cur)
elif isinstance(cur, mparser.ContinueNode):
raise ContinueRequest()
elif isinstance(cur, mparser.BreakNode):
raise BreakRequest()
else:
raise InvalidCode("Unknown statement.")
return None
def evaluate_arraystatement(self, cur: mparser.ArrayNode) -> InterpreterObject:
(arguments, kwargs) = self.reduce_arguments(cur.args)
if len(kwargs) > 0:
raise InvalidCode('Keyword arguments are invalid in array construction.')
return self._holderify([_unholder(x) for x in arguments])
@FeatureNew('dict', '0.47.0')
def evaluate_dictstatement(self, cur: mparser.DictNode) -> InterpreterObject:
def resolve_key(key: mparser.BaseNode) -> str:
if not isinstance(key, mparser.StringNode):
FeatureNew.single_use('Dictionary entry using non literal key', '0.53.0', self.subproject)
str_key = _unholder(self.evaluate_statement(key))
if not isinstance(str_key, str):
raise InvalidArguments('Key must be a string')
return str_key
arguments, kwargs = self.reduce_arguments(cur.args, key_resolver=resolve_key, duplicate_key_error='Duplicate dictionary key: {}')
assert not arguments
return self._holderify({k: _unholder(v) for k, v in kwargs.items()})
def evaluate_notstatement(self, cur: mparser.NotNode) -> InterpreterObject:
v = self.evaluate_statement(cur.value)
if isinstance(v, Disabler):
return v
return self._holderify(v.operator_call(MesonOperator.NOT, None))
def evaluate_if(self, node: mparser.IfClauseNode) -> T.Optional[Disabler]:
assert isinstance(node, mparser.IfClauseNode)
for i in node.ifs:
# Reset self.tmp_meson_version to know if it gets set during this
# statement evaluation.
self.tmp_meson_version = None
result = self.evaluate_statement(i.condition)
if isinstance(result, Disabler):
return result
if not isinstance(result, InterpreterObject):
raise mesonlib.MesonBugException(f'Argument to not ({result}) is not an InterpreterObject but {type(result).__name__}.')
res = result.operator_call(MesonOperator.BOOL, None)
if not isinstance(res, bool):
raise InvalidCode(f'If clause {result!r} does not evaluate to true or false.')
if res:
prev_meson_version = mesonlib.project_meson_versions[self.subproject]
if self.tmp_meson_version:
mesonlib.project_meson_versions[self.subproject] = self.tmp_meson_version
try:
self.evaluate_codeblock(i.block)
finally:
mesonlib.project_meson_versions[self.subproject] = prev_meson_version
return None
if not isinstance(node.elseblock, mparser.EmptyNode):
self.evaluate_codeblock(node.elseblock)
return None
def evaluate_comparison(self, node: mparser.ComparisonNode) -> InterpreterObject:
val1 = self.evaluate_statement(node.left)
if isinstance(val1, Disabler):
return val1
val2 = self.evaluate_statement(node.right)
if isinstance(val2, Disabler):
return val2
# New code based on InterpreterObjects
operator = {
'in': MesonOperator.IN,
'notin': MesonOperator.NOT_IN,
'==': MesonOperator.EQUALS,
'!=': MesonOperator.NOT_EQUALS,
'>': MesonOperator.GREATER,
'<': MesonOperator.LESS,
'>=': MesonOperator.GREATER_EQUALS,
'<=': MesonOperator.LESS_EQUALS,
}[node.ctype]
# Check if the arguments should be reversed for simplicity (this essentially converts `in` to `contains`)
if operator in (MesonOperator.IN, MesonOperator.NOT_IN):
val1, val2 = val2, val1
return self._holderify(val1.operator_call(operator, _unholder(val2)))
def evaluate_andstatement(self, cur: mparser.AndNode) -> InterpreterObject:
l = self.evaluate_statement(cur.left)
if isinstance(l, Disabler):
return l
l_bool = l.operator_call(MesonOperator.BOOL, None)
if not l_bool:
return self._holderify(l_bool)
r = self.evaluate_statement(cur.right)
if isinstance(r, Disabler):
return r
return self._holderify(r.operator_call(MesonOperator.BOOL, None))
def evaluate_orstatement(self, cur: mparser.OrNode) -> InterpreterObject:
l = self.evaluate_statement(cur.left)
if isinstance(l, Disabler):
return l
l_bool = l.operator_call(MesonOperator.BOOL, None)
if l_bool:
return self._holderify(l_bool)
r = self.evaluate_statement(cur.right)
if isinstance(r, Disabler):
return r
return self._holderify(r.operator_call(MesonOperator.BOOL, None))
def evaluate_uminusstatement(self, cur: mparser.UMinusNode) -> InterpreterObject:
v = self.evaluate_statement(cur.value)
if isinstance(v, Disabler):
return v
return self._holderify(v.operator_call(MesonOperator.UMINUS, None))
def evaluate_arithmeticstatement(self, cur: mparser.ArithmeticNode) -> InterpreterObject:
l = self.evaluate_statement(cur.left)
if isinstance(l, Disabler):
return l
r = self.evaluate_statement(cur.right)
if isinstance(r, Disabler):
return r
mapping: T.Dict[str, MesonOperator] = {
'add': MesonOperator.PLUS,
'sub': MesonOperator.MINUS,
'mul': MesonOperator.TIMES,
'div': MesonOperator.DIV,
'mod': MesonOperator.MOD,
}
res = l.operator_call(mapping[cur.operation], _unholder(r))
return self._holderify(res)
def evaluate_ternary(self, node: mparser.TernaryNode) -> T.Optional[InterpreterObject]:
assert isinstance(node, mparser.TernaryNode)
result = self.evaluate_statement(node.condition)
if isinstance(result, Disabler):
return result
result_bool = result.operator_call(MesonOperator.BOOL, None)
if result_bool:
return self.evaluate_statement(node.trueblock)
else:
return self.evaluate_statement(node.falseblock)
@FeatureNew('format strings', '0.58.0')
def evaluate_fstring(self, node: mparser.FormatStringNode) -> InterpreterObject:
assert isinstance(node, mparser.FormatStringNode)
def replace(match: T.Match[str]) -> str:
var = str(match.group(1))
try:
val = _unholder(self.variables[var])
if not isinstance(val, (str, int, float, bool)):
raise InvalidCode(f'Identifier "{var}" does not name a formattable variable ' +
'(has to be an integer, a string, a floating point number or a boolean).')
return str(val)
except KeyError:
raise InvalidCode(f'Identifier "{var}" does not name a variable.')
res = re.sub(r'@([_a-zA-Z][_0-9a-zA-Z]*)@', replace, node.value)
return self._holderify(res)
def evaluate_foreach(self, node: mparser.ForeachClauseNode) -> None:
assert isinstance(node, mparser.ForeachClauseNode)
items = self.evaluate_statement(node.items)
if not isinstance(items, IterableObject):
raise InvalidArguments('Items of foreach loop do not support iterating')
tsize = items.iter_tuple_size()
if len(node.varnames) != (tsize or 1):
raise InvalidArguments(f'Foreach expects exactly {tsize or 1} variables for iterating over objects of type {items.display_name()}')
for i in items.iter_self():
if tsize is None:
if isinstance(i, tuple):
raise mesonlib.MesonBugException(f'Iteration of {items} returned a tuple even though iter_tuple_size() is None')
self.set_variable(node.varnames[0], self._holderify(i))
else:
if not isinstance(i, tuple):
raise mesonlib.MesonBugException(f'Iteration of {items} did not return a tuple even though iter_tuple_size() is {tsize}')
if len(i) != tsize:
raise mesonlib.MesonBugException(f'Iteration of {items} did not return a tuple even though iter_tuple_size() is {tsize}')
for j in range(tsize):
self.set_variable(node.varnames[j], self._holderify(i[j]))
try:
self.evaluate_codeblock(node.block)
except ContinueRequest:
continue
except BreakRequest:
break
def evaluate_plusassign(self, node: mparser.PlusAssignmentNode) -> None:
assert isinstance(node, mparser.PlusAssignmentNode)
varname = node.var_name
addition = self.evaluate_statement(node.value)
# Remember that all variables are immutable. We must always create a
# full new variable and then assign it.
old_variable = self.get_variable(varname)
new_value = self._holderify(old_variable.operator_call(MesonOperator.PLUS, _unholder(addition)))
self.set_variable(varname, new_value)
def evaluate_indexing(self, node: mparser.IndexNode) -> InterpreterObject:
assert isinstance(node, mparser.IndexNode)
iobject = self.evaluate_statement(node.iobject)
if isinstance(iobject, Disabler):
return iobject
index = _unholder(self.evaluate_statement(node.index))
if iobject is None:
raise InterpreterException('Tried to evaluate indexing on None')
return self._holderify(iobject.operator_call(MesonOperator.INDEX, index))
def function_call(self, node: mparser.FunctionNode) -> T.Optional[InterpreterObject]:
func_name = node.func_name
(h_posargs, h_kwargs) = self.reduce_arguments(node.args)
(posargs, kwargs) = self._unholder_args(h_posargs, h_kwargs)
if is_disabled(posargs, kwargs) and func_name not in {'get_variable', 'set_variable', 'unset_variable', 'is_disabler'}:
return Disabler()
if func_name in self.funcs:
func = self.funcs[func_name]
func_args = posargs
if not getattr(func, 'no-args-flattening', False):
func_args = flatten(posargs)
if not getattr(func, 'no-second-level-holder-flattening', False):
func_args, kwargs = resolve_second_level_holders(func_args, kwargs)
res = func(node, func_args, kwargs)
return self._holderify(res) if res is not None else None
else:
self.unknown_function_called(func_name)
return None
def method_call(self, node: mparser.MethodNode) -> T.Optional[InterpreterObject]:
invokable = node.source_object
obj: T.Optional[InterpreterObject]
if isinstance(invokable, mparser.IdNode):
object_name = invokable.value
obj = self.get_variable(object_name)
else:
obj = self.evaluate_statement(invokable)
method_name = node.name
(h_args, h_kwargs) = self.reduce_arguments(node.args)
(args, kwargs) = self._unholder_args(h_args, h_kwargs)
if is_disabled(args, kwargs):
return Disabler()
if not isinstance(obj, InterpreterObject):
raise InvalidArguments('Variable "%s" is not callable.' % object_name)
# TODO: InterpreterBase **really** shouldn't be in charge of checking this
if method_name == 'extract_objects':
if isinstance(obj, ObjectHolder):
self.validate_extraction(obj.held_object)
elif not isinstance(obj, Disabler):
raise InvalidArguments(f'Invalid operation "extract_objects" on variable "{object_name}" of type {type(obj).__name__}')
obj.current_node = node
res = obj.method_call(method_name, args, kwargs)
return self._holderify(res) if res is not None else None
def _holderify(self, res: T.Union[TYPE_var, InterpreterObject]) -> InterpreterObject:
if isinstance(res, HoldableTypes):
# Always check for an exact match first.
cls = self.holder_map.get(type(res), None)
if cls is not None:
# Casts to Interpreter are required here since an assertion would
# not work for the `ast` module.
return cls(res, T.cast('Interpreter', self))
# Try the boundary types next.
for typ, cls in self.bound_holder_map.items():
if isinstance(res, typ):
return cls(res, T.cast('Interpreter', self))
raise mesonlib.MesonBugException(f'Object {res} of type {type(res).__name__} is neither in self.holder_map nor self.bound_holder_map.')
elif isinstance(res, ObjectHolder):
raise mesonlib.MesonBugException(f'Returned object {res} of type {type(res).__name__} is an object holder.')
elif isinstance(res, MesonInterpreterObject):
return res
raise mesonlib.MesonBugException(f'Unknown returned object {res} of type {type(res).__name__} in the parameters.')
def _unholder_args(self,
args: T.List[InterpreterObject],
kwargs: T.Dict[str, InterpreterObject]) -> T.Tuple[T.List[TYPE_var], TYPE_kwargs]:
return [_unholder(x) for x in args], {k: _unholder(v) for k, v in kwargs.items()}
def unknown_function_called(self, func_name: str) -> None:
raise InvalidCode('Unknown function "%s".' % func_name)
def reduce_arguments(
self,
args: mparser.ArgumentNode,
key_resolver: T.Callable[[mparser.BaseNode], str] = default_resolve_key,
duplicate_key_error: T.Optional[str] = None,
) -> T.Tuple[
T.List[InterpreterObject],
T.Dict[str, InterpreterObject]
]:
assert isinstance(args, mparser.ArgumentNode)
if args.incorrect_order():
raise InvalidArguments('All keyword arguments must be after positional arguments.')
self.argument_depth += 1
reduced_pos = [self.evaluate_statement(arg) for arg in args.arguments]
if any(x is None for x in reduced_pos):
raise InvalidArguments(f'At least one value in the arguments is void.')
reduced_kw: T.Dict[str, InterpreterObject] = {}
for key, val in args.kwargs.items():
reduced_key = key_resolver(key)
assert isinstance(val, mparser.BaseNode)
reduced_val = self.evaluate_statement(val)
if reduced_val is None:
raise InvalidArguments(f'Value of key {reduced_key} is void.')
if duplicate_key_error and reduced_key in reduced_kw:
raise InvalidArguments(duplicate_key_error.format(reduced_key))
reduced_kw[reduced_key] = reduced_val
self.argument_depth -= 1
final_kw = self.expand_default_kwargs(reduced_kw)
return reduced_pos, final_kw
def expand_default_kwargs(self, kwargs: T.Dict[str, T.Optional[InterpreterObject]]) -> T.Dict[str, T.Optional[InterpreterObject]]:
if 'kwargs' not in kwargs:
return kwargs
to_expand = _unholder(kwargs.pop('kwargs'))
if not isinstance(to_expand, dict):
raise InterpreterException('Value of "kwargs" must be dictionary.')
if 'kwargs' in to_expand:
raise InterpreterException('Kwargs argument must not contain a "kwargs" entry. Points for thinking meta, though. :P')
for k, v in to_expand.items():
if k in kwargs:
raise InterpreterException(f'Entry "{k}" defined both as a keyword argument and in a "kwarg" entry.')
kwargs[k] = self._holderify(v)
return kwargs
def assignment(self, node: mparser.AssignmentNode) -> None:
assert isinstance(node, mparser.AssignmentNode)
if self.argument_depth != 0:
raise InvalidArguments(textwrap.dedent('''\
Tried to assign values inside an argument list.
To specify a keyword argument, use : instead of =.
'''))
var_name = node.var_name
if not isinstance(var_name, str):
raise InvalidArguments('Tried to assign value to a non-variable.')
value = self.evaluate_statement(node.value)
# For mutable objects we need to make a copy on assignment
if isinstance(value, MutableInterpreterObject):
value = copy.deepcopy(value)
self.set_variable(var_name, value)
return None
def set_variable(self, varname: str, variable: T.Union[TYPE_var, InterpreterObject], *, holderify: bool = False) -> None:
if variable is None:
raise InvalidCode('Can not assign None to variable.')
if holderify:
variable = self._holderify(variable)
else:
# Ensure that we are always storing ObjectHolders
if not isinstance(variable, InterpreterObject):
raise mesonlib.MesonBugException(f'set_variable in InterpreterBase called with a non InterpreterObject {variable} of type {type(variable).__name__}')
if not isinstance(varname, str):
raise InvalidCode('First argument to set_variable must be a string.')
if re.match('[_a-zA-Z][_0-9a-zA-Z]*$', varname) is None:
raise InvalidCode('Invalid variable name: ' + varname)
if varname in self.builtin:
raise InvalidCode('Tried to overwrite internal variable "%s"' % varname)
self.variables[varname] = variable
def get_variable(self, varname: str) -> InterpreterObject:
if varname in self.builtin:
return self.builtin[varname]
if varname in self.variables:
return self.variables[varname]
raise InvalidCode('Unknown variable "%s".' % varname)
def validate_extraction(self, buildtarget: mesonlib.HoldableObject) -> None:
raise InterpreterException('validate_extraction is not implemented in this context (please file a bug)')