The Meson Build System
http://mesonbuild.com/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
600 lines
27 KiB
600 lines
27 KiB
# Copyright 2016-2017 The Meson development team |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
# This class contains the basic functionality needed to run any interpreter |
|
# or an interpreter-based tool. |
|
|
|
from .. import mparser, mesonlib |
|
from .. import environment |
|
|
|
from .baseobjects import ( |
|
InterpreterObject, |
|
MesonInterpreterObject, |
|
MutableInterpreterObject, |
|
InterpreterObjectTypeVar, |
|
ObjectHolder, |
|
IterableObject, |
|
|
|
TYPE_var, |
|
TYPE_kwargs, |
|
|
|
HoldableTypes, |
|
) |
|
|
|
from .exceptions import ( |
|
InterpreterException, |
|
InvalidCode, |
|
InvalidArguments, |
|
SubdirDoneRequest, |
|
ContinueRequest, |
|
BreakRequest |
|
) |
|
|
|
from .decorators import FeatureNew |
|
from .disabler import Disabler, is_disabled |
|
from .helpers import default_resolve_key, flatten, resolve_second_level_holders |
|
from .operator import MesonOperator |
|
from ._unholder import _unholder |
|
|
|
import os, copy, re, pathlib |
|
import typing as T |
|
import textwrap |
|
|
|
if T.TYPE_CHECKING: |
|
# T.cast is not handled by flake8 to detect quoted annotation use |
|
# see https://github.com/PyCQA/pyflakes/pull/632 |
|
from ..interpreter import Interpreter # noqa |
|
|
|
HolderMapType = T.Dict[ |
|
T.Union[ |
|
T.Type[mesonlib.HoldableObject], |
|
T.Type[int], |
|
T.Type[bool], |
|
T.Type[str], |
|
T.Type[list], |
|
T.Type[dict], |
|
], |
|
# For some reason, this has to be a callable and can't just be ObjectHolder[InterpreterObjectTypeVar] |
|
T.Callable[[InterpreterObjectTypeVar, 'Interpreter'], ObjectHolder[InterpreterObjectTypeVar]] |
|
] |
|
|
|
FunctionType = T.Dict[ |
|
str, |
|
T.Callable[[mparser.BaseNode, T.List[TYPE_var], T.Dict[str, TYPE_var]], TYPE_var] |
|
] |
|
|
|
class InterpreterBase: |
|
def __init__(self, source_root: str, subdir: str, subproject: str): |
|
self.source_root = source_root |
|
self.funcs: FunctionType = {} |
|
self.builtin: T.Dict[str, InterpreterObject] = {} |
|
# Holder maps store a mapping from an HoldableObject to a class ObjectHolder |
|
self.holder_map: HolderMapType = {} |
|
self.bound_holder_map: HolderMapType = {} |
|
self.subdir = subdir |
|
self.root_subdir = subdir |
|
self.subproject = subproject |
|
self.variables: T.Dict[str, InterpreterObject] = {} |
|
self.argument_depth = 0 |
|
self.current_lineno = -1 |
|
# Current node set during a function call. This can be used as location |
|
# when printing a warning message during a method call. |
|
self.current_node = None # type: mparser.BaseNode |
|
# This is set to `version_string` when this statement is evaluated: |
|
# meson.version().compare_version(version_string) |
|
# If it was part of a if-clause, it is used to temporally override the |
|
# current meson version target within that if-block. |
|
self.tmp_meson_version = None # type: T.Optional[str] |
|
|
|
def load_root_meson_file(self) -> None: |
|
mesonfile = os.path.join(self.source_root, self.subdir, environment.build_filename) |
|
if not os.path.isfile(mesonfile): |
|
raise InvalidArguments('Missing Meson file in %s' % mesonfile) |
|
with open(mesonfile, encoding='utf-8') as mf: |
|
code = mf.read() |
|
if code.isspace(): |
|
raise InvalidCode('Builder file is empty.') |
|
assert isinstance(code, str) |
|
try: |
|
self.ast = mparser.Parser(code, mesonfile).parse() |
|
except mesonlib.MesonException as me: |
|
me.file = mesonfile |
|
raise me |
|
|
|
def parse_project(self) -> None: |
|
""" |
|
Parses project() and initializes languages, compilers etc. Do this |
|
early because we need this before we parse the rest of the AST. |
|
""" |
|
self.evaluate_codeblock(self.ast, end=1) |
|
|
|
def sanity_check_ast(self) -> None: |
|
if not isinstance(self.ast, mparser.CodeBlockNode): |
|
raise InvalidCode('AST is of invalid type. Possibly a bug in the parser.') |
|
if not self.ast.lines: |
|
raise InvalidCode('No statements in code.') |
|
first = self.ast.lines[0] |
|
if not isinstance(first, mparser.FunctionNode) or first.func_name != 'project': |
|
p = pathlib.Path(self.source_root).resolve() |
|
found = p |
|
for parent in p.parents: |
|
if (parent / 'meson.build').is_file(): |
|
with open(parent / 'meson.build', encoding='utf-8') as f: |
|
if f.readline().startswith('project('): |
|
found = parent |
|
break |
|
else: |
|
break |
|
|
|
error = 'first statement must be a call to project()' |
|
if found != p: |
|
raise InvalidCode(f'Not the project root: {error}\n\nDid you mean to run meson from the directory: "{found}"?') |
|
else: |
|
raise InvalidCode(f'Invalid source tree: {error}') |
|
|
|
def run(self) -> None: |
|
# Evaluate everything after the first line, which is project() because |
|
# we already parsed that in self.parse_project() |
|
try: |
|
self.evaluate_codeblock(self.ast, start=1) |
|
except SubdirDoneRequest: |
|
pass |
|
|
|
def evaluate_codeblock(self, node: mparser.CodeBlockNode, start: int = 0, end: T.Optional[int] = None) -> None: |
|
if node is None: |
|
return |
|
if not isinstance(node, mparser.CodeBlockNode): |
|
e = InvalidCode('Tried to execute a non-codeblock. Possibly a bug in the parser.') |
|
e.lineno = node.lineno |
|
e.colno = node.colno |
|
raise e |
|
statements = node.lines[start:end] |
|
i = 0 |
|
while i < len(statements): |
|
cur = statements[i] |
|
try: |
|
self.current_lineno = cur.lineno |
|
self.evaluate_statement(cur) |
|
except Exception as e: |
|
if getattr(e, 'lineno', None) is None: |
|
# We are doing the equivalent to setattr here and mypy does not like it |
|
e.lineno = cur.lineno # type: ignore |
|
e.colno = cur.colno # type: ignore |
|
e.file = os.path.join(self.source_root, self.subdir, environment.build_filename) # type: ignore |
|
raise e |
|
i += 1 # In THE FUTURE jump over blocks and stuff. |
|
|
|
def evaluate_statement(self, cur: mparser.BaseNode) -> T.Optional[InterpreterObject]: |
|
self.current_node = cur |
|
if isinstance(cur, mparser.FunctionNode): |
|
return self.function_call(cur) |
|
elif isinstance(cur, mparser.AssignmentNode): |
|
self.assignment(cur) |
|
elif isinstance(cur, mparser.MethodNode): |
|
return self.method_call(cur) |
|
elif isinstance(cur, mparser.StringNode): |
|
return self._holderify(cur.value) |
|
elif isinstance(cur, mparser.BooleanNode): |
|
return self._holderify(cur.value) |
|
elif isinstance(cur, mparser.IfClauseNode): |
|
return self.evaluate_if(cur) |
|
elif isinstance(cur, mparser.IdNode): |
|
return self.get_variable(cur.value) |
|
elif isinstance(cur, mparser.ComparisonNode): |
|
return self.evaluate_comparison(cur) |
|
elif isinstance(cur, mparser.ArrayNode): |
|
return self.evaluate_arraystatement(cur) |
|
elif isinstance(cur, mparser.DictNode): |
|
return self.evaluate_dictstatement(cur) |
|
elif isinstance(cur, mparser.NumberNode): |
|
return self._holderify(cur.value) |
|
elif isinstance(cur, mparser.AndNode): |
|
return self.evaluate_andstatement(cur) |
|
elif isinstance(cur, mparser.OrNode): |
|
return self.evaluate_orstatement(cur) |
|
elif isinstance(cur, mparser.NotNode): |
|
return self.evaluate_notstatement(cur) |
|
elif isinstance(cur, mparser.UMinusNode): |
|
return self.evaluate_uminusstatement(cur) |
|
elif isinstance(cur, mparser.ArithmeticNode): |
|
return self.evaluate_arithmeticstatement(cur) |
|
elif isinstance(cur, mparser.ForeachClauseNode): |
|
self.evaluate_foreach(cur) |
|
elif isinstance(cur, mparser.PlusAssignmentNode): |
|
self.evaluate_plusassign(cur) |
|
elif isinstance(cur, mparser.IndexNode): |
|
return self.evaluate_indexing(cur) |
|
elif isinstance(cur, mparser.TernaryNode): |
|
return self.evaluate_ternary(cur) |
|
elif isinstance(cur, mparser.FormatStringNode): |
|
return self.evaluate_fstring(cur) |
|
elif isinstance(cur, mparser.ContinueNode): |
|
raise ContinueRequest() |
|
elif isinstance(cur, mparser.BreakNode): |
|
raise BreakRequest() |
|
else: |
|
raise InvalidCode("Unknown statement.") |
|
return None |
|
|
|
def evaluate_arraystatement(self, cur: mparser.ArrayNode) -> InterpreterObject: |
|
(arguments, kwargs) = self.reduce_arguments(cur.args) |
|
if len(kwargs) > 0: |
|
raise InvalidCode('Keyword arguments are invalid in array construction.') |
|
return self._holderify([_unholder(x) for x in arguments]) |
|
|
|
@FeatureNew('dict', '0.47.0') |
|
def evaluate_dictstatement(self, cur: mparser.DictNode) -> InterpreterObject: |
|
def resolve_key(key: mparser.BaseNode) -> str: |
|
if not isinstance(key, mparser.StringNode): |
|
FeatureNew.single_use('Dictionary entry using non literal key', '0.53.0', self.subproject) |
|
str_key = _unholder(self.evaluate_statement(key)) |
|
if not isinstance(str_key, str): |
|
raise InvalidArguments('Key must be a string') |
|
return str_key |
|
arguments, kwargs = self.reduce_arguments(cur.args, key_resolver=resolve_key, duplicate_key_error='Duplicate dictionary key: {}') |
|
assert not arguments |
|
return self._holderify({k: _unholder(v) for k, v in kwargs.items()}) |
|
|
|
def evaluate_notstatement(self, cur: mparser.NotNode) -> InterpreterObject: |
|
v = self.evaluate_statement(cur.value) |
|
if isinstance(v, Disabler): |
|
return v |
|
return self._holderify(v.operator_call(MesonOperator.NOT, None)) |
|
|
|
def evaluate_if(self, node: mparser.IfClauseNode) -> T.Optional[Disabler]: |
|
assert isinstance(node, mparser.IfClauseNode) |
|
for i in node.ifs: |
|
# Reset self.tmp_meson_version to know if it gets set during this |
|
# statement evaluation. |
|
self.tmp_meson_version = None |
|
result = self.evaluate_statement(i.condition) |
|
if isinstance(result, Disabler): |
|
return result |
|
if not isinstance(result, InterpreterObject): |
|
raise mesonlib.MesonBugException(f'Argument to not ({result}) is not an InterpreterObject but {type(result).__name__}.') |
|
res = result.operator_call(MesonOperator.BOOL, None) |
|
if not isinstance(res, bool): |
|
raise InvalidCode(f'If clause {result!r} does not evaluate to true or false.') |
|
if res: |
|
prev_meson_version = mesonlib.project_meson_versions[self.subproject] |
|
if self.tmp_meson_version: |
|
mesonlib.project_meson_versions[self.subproject] = self.tmp_meson_version |
|
try: |
|
self.evaluate_codeblock(i.block) |
|
finally: |
|
mesonlib.project_meson_versions[self.subproject] = prev_meson_version |
|
return None |
|
if not isinstance(node.elseblock, mparser.EmptyNode): |
|
self.evaluate_codeblock(node.elseblock) |
|
return None |
|
|
|
def evaluate_comparison(self, node: mparser.ComparisonNode) -> InterpreterObject: |
|
val1 = self.evaluate_statement(node.left) |
|
if isinstance(val1, Disabler): |
|
return val1 |
|
val2 = self.evaluate_statement(node.right) |
|
if isinstance(val2, Disabler): |
|
return val2 |
|
|
|
# New code based on InterpreterObjects |
|
operator = { |
|
'in': MesonOperator.IN, |
|
'notin': MesonOperator.NOT_IN, |
|
'==': MesonOperator.EQUALS, |
|
'!=': MesonOperator.NOT_EQUALS, |
|
'>': MesonOperator.GREATER, |
|
'<': MesonOperator.LESS, |
|
'>=': MesonOperator.GREATER_EQUALS, |
|
'<=': MesonOperator.LESS_EQUALS, |
|
}[node.ctype] |
|
|
|
# Check if the arguments should be reversed for simplicity (this essentially converts `in` to `contains`) |
|
if operator in (MesonOperator.IN, MesonOperator.NOT_IN): |
|
val1, val2 = val2, val1 |
|
|
|
val1.current_node = node |
|
return self._holderify(val1.operator_call(operator, _unholder(val2))) |
|
|
|
def evaluate_andstatement(self, cur: mparser.AndNode) -> InterpreterObject: |
|
l = self.evaluate_statement(cur.left) |
|
if isinstance(l, Disabler): |
|
return l |
|
l_bool = l.operator_call(MesonOperator.BOOL, None) |
|
if not l_bool: |
|
return self._holderify(l_bool) |
|
r = self.evaluate_statement(cur.right) |
|
if isinstance(r, Disabler): |
|
return r |
|
return self._holderify(r.operator_call(MesonOperator.BOOL, None)) |
|
|
|
def evaluate_orstatement(self, cur: mparser.OrNode) -> InterpreterObject: |
|
l = self.evaluate_statement(cur.left) |
|
if isinstance(l, Disabler): |
|
return l |
|
l_bool = l.operator_call(MesonOperator.BOOL, None) |
|
if l_bool: |
|
return self._holderify(l_bool) |
|
r = self.evaluate_statement(cur.right) |
|
if isinstance(r, Disabler): |
|
return r |
|
return self._holderify(r.operator_call(MesonOperator.BOOL, None)) |
|
|
|
def evaluate_uminusstatement(self, cur: mparser.UMinusNode) -> InterpreterObject: |
|
v = self.evaluate_statement(cur.value) |
|
if isinstance(v, Disabler): |
|
return v |
|
v.current_node = cur |
|
return self._holderify(v.operator_call(MesonOperator.UMINUS, None)) |
|
|
|
def evaluate_arithmeticstatement(self, cur: mparser.ArithmeticNode) -> InterpreterObject: |
|
l = self.evaluate_statement(cur.left) |
|
if isinstance(l, Disabler): |
|
return l |
|
r = self.evaluate_statement(cur.right) |
|
if isinstance(r, Disabler): |
|
return r |
|
|
|
mapping: T.Dict[str, MesonOperator] = { |
|
'add': MesonOperator.PLUS, |
|
'sub': MesonOperator.MINUS, |
|
'mul': MesonOperator.TIMES, |
|
'div': MesonOperator.DIV, |
|
'mod': MesonOperator.MOD, |
|
} |
|
l.current_node = cur |
|
res = l.operator_call(mapping[cur.operation], _unholder(r)) |
|
return self._holderify(res) |
|
|
|
def evaluate_ternary(self, node: mparser.TernaryNode) -> T.Optional[InterpreterObject]: |
|
assert isinstance(node, mparser.TernaryNode) |
|
result = self.evaluate_statement(node.condition) |
|
if isinstance(result, Disabler): |
|
return result |
|
result.current_node = node |
|
result_bool = result.operator_call(MesonOperator.BOOL, None) |
|
if result_bool: |
|
return self.evaluate_statement(node.trueblock) |
|
else: |
|
return self.evaluate_statement(node.falseblock) |
|
|
|
@FeatureNew('format strings', '0.58.0') |
|
def evaluate_fstring(self, node: mparser.FormatStringNode) -> InterpreterObject: |
|
assert isinstance(node, mparser.FormatStringNode) |
|
|
|
def replace(match: T.Match[str]) -> str: |
|
var = str(match.group(1)) |
|
try: |
|
val = _unholder(self.variables[var]) |
|
if not isinstance(val, (str, int, float, bool)): |
|
raise InvalidCode(f'Identifier "{var}" does not name a formattable variable ' + |
|
'(has to be an integer, a string, a floating point number or a boolean).') |
|
|
|
return str(val) |
|
except KeyError: |
|
raise InvalidCode(f'Identifier "{var}" does not name a variable.') |
|
|
|
res = re.sub(r'@([_a-zA-Z][_0-9a-zA-Z]*)@', replace, node.value) |
|
return self._holderify(res) |
|
|
|
def evaluate_foreach(self, node: mparser.ForeachClauseNode) -> None: |
|
assert isinstance(node, mparser.ForeachClauseNode) |
|
items = self.evaluate_statement(node.items) |
|
if not isinstance(items, IterableObject): |
|
raise InvalidArguments('Items of foreach loop do not support iterating') |
|
|
|
tsize = items.iter_tuple_size() |
|
if len(node.varnames) != (tsize or 1): |
|
raise InvalidArguments(f'Foreach expects exactly {tsize or 1} variables for iterating over objects of type {items.display_name()}') |
|
|
|
for i in items.iter_self(): |
|
if tsize is None: |
|
if isinstance(i, tuple): |
|
raise mesonlib.MesonBugException(f'Iteration of {items} returned a tuple even though iter_tuple_size() is None') |
|
self.set_variable(node.varnames[0], self._holderify(i)) |
|
else: |
|
if not isinstance(i, tuple): |
|
raise mesonlib.MesonBugException(f'Iteration of {items} did not return a tuple even though iter_tuple_size() is {tsize}') |
|
if len(i) != tsize: |
|
raise mesonlib.MesonBugException(f'Iteration of {items} did not return a tuple even though iter_tuple_size() is {tsize}') |
|
for j in range(tsize): |
|
self.set_variable(node.varnames[j], self._holderify(i[j])) |
|
try: |
|
self.evaluate_codeblock(node.block) |
|
except ContinueRequest: |
|
continue |
|
except BreakRequest: |
|
break |
|
|
|
def evaluate_plusassign(self, node: mparser.PlusAssignmentNode) -> None: |
|
assert isinstance(node, mparser.PlusAssignmentNode) |
|
varname = node.var_name |
|
addition = self.evaluate_statement(node.value) |
|
|
|
# Remember that all variables are immutable. We must always create a |
|
# full new variable and then assign it. |
|
old_variable = self.get_variable(varname) |
|
old_variable.current_node = node |
|
new_value = self._holderify(old_variable.operator_call(MesonOperator.PLUS, _unholder(addition))) |
|
self.set_variable(varname, new_value) |
|
|
|
def evaluate_indexing(self, node: mparser.IndexNode) -> InterpreterObject: |
|
assert isinstance(node, mparser.IndexNode) |
|
iobject = self.evaluate_statement(node.iobject) |
|
if isinstance(iobject, Disabler): |
|
return iobject |
|
index = _unholder(self.evaluate_statement(node.index)) |
|
|
|
if iobject is None: |
|
raise InterpreterException('Tried to evaluate indexing on None') |
|
iobject.current_node = node |
|
return self._holderify(iobject.operator_call(MesonOperator.INDEX, index)) |
|
|
|
def function_call(self, node: mparser.FunctionNode) -> T.Optional[InterpreterObject]: |
|
func_name = node.func_name |
|
(h_posargs, h_kwargs) = self.reduce_arguments(node.args) |
|
(posargs, kwargs) = self._unholder_args(h_posargs, h_kwargs) |
|
if is_disabled(posargs, kwargs) and func_name not in {'get_variable', 'set_variable', 'unset_variable', 'is_disabler'}: |
|
return Disabler() |
|
if func_name in self.funcs: |
|
func = self.funcs[func_name] |
|
func_args = posargs |
|
if not getattr(func, 'no-args-flattening', False): |
|
func_args = flatten(posargs) |
|
if not getattr(func, 'no-second-level-holder-flattening', False): |
|
func_args, kwargs = resolve_second_level_holders(func_args, kwargs) |
|
res = func(node, func_args, kwargs) |
|
return self._holderify(res) if res is not None else None |
|
else: |
|
self.unknown_function_called(func_name) |
|
return None |
|
|
|
def method_call(self, node: mparser.MethodNode) -> T.Optional[InterpreterObject]: |
|
invokable = node.source_object |
|
obj: T.Optional[InterpreterObject] |
|
if isinstance(invokable, mparser.IdNode): |
|
object_name = invokable.value |
|
obj = self.get_variable(object_name) |
|
else: |
|
obj = self.evaluate_statement(invokable) |
|
method_name = node.name |
|
(h_args, h_kwargs) = self.reduce_arguments(node.args) |
|
(args, kwargs) = self._unholder_args(h_args, h_kwargs) |
|
if is_disabled(args, kwargs): |
|
return Disabler() |
|
if not isinstance(obj, InterpreterObject): |
|
raise InvalidArguments('Variable "%s" is not callable.' % object_name) |
|
# TODO: InterpreterBase **really** shouldn't be in charge of checking this |
|
if method_name == 'extract_objects': |
|
if isinstance(obj, ObjectHolder): |
|
self.validate_extraction(obj.held_object) |
|
elif not isinstance(obj, Disabler): |
|
raise InvalidArguments(f'Invalid operation "extract_objects" on variable "{object_name}" of type {type(obj).__name__}') |
|
obj.current_node = node |
|
res = obj.method_call(method_name, args, kwargs) |
|
return self._holderify(res) if res is not None else None |
|
|
|
def _holderify(self, res: T.Union[TYPE_var, InterpreterObject]) -> InterpreterObject: |
|
if isinstance(res, HoldableTypes): |
|
# Always check for an exact match first. |
|
cls = self.holder_map.get(type(res), None) |
|
if cls is not None: |
|
# Casts to Interpreter are required here since an assertion would |
|
# not work for the `ast` module. |
|
return cls(res, T.cast('Interpreter', self)) |
|
# Try the boundary types next. |
|
for typ, cls in self.bound_holder_map.items(): |
|
if isinstance(res, typ): |
|
return cls(res, T.cast('Interpreter', self)) |
|
raise mesonlib.MesonBugException(f'Object {res} of type {type(res).__name__} is neither in self.holder_map nor self.bound_holder_map.') |
|
elif isinstance(res, ObjectHolder): |
|
raise mesonlib.MesonBugException(f'Returned object {res} of type {type(res).__name__} is an object holder.') |
|
elif isinstance(res, MesonInterpreterObject): |
|
return res |
|
raise mesonlib.MesonBugException(f'Unknown returned object {res} of type {type(res).__name__} in the parameters.') |
|
|
|
def _unholder_args(self, |
|
args: T.List[InterpreterObject], |
|
kwargs: T.Dict[str, InterpreterObject]) -> T.Tuple[T.List[TYPE_var], TYPE_kwargs]: |
|
return [_unholder(x) for x in args], {k: _unholder(v) for k, v in kwargs.items()} |
|
|
|
def unknown_function_called(self, func_name: str) -> None: |
|
raise InvalidCode('Unknown function "%s".' % func_name) |
|
|
|
def reduce_arguments( |
|
self, |
|
args: mparser.ArgumentNode, |
|
key_resolver: T.Callable[[mparser.BaseNode], str] = default_resolve_key, |
|
duplicate_key_error: T.Optional[str] = None, |
|
) -> T.Tuple[ |
|
T.List[InterpreterObject], |
|
T.Dict[str, InterpreterObject] |
|
]: |
|
assert isinstance(args, mparser.ArgumentNode) |
|
if args.incorrect_order(): |
|
raise InvalidArguments('All keyword arguments must be after positional arguments.') |
|
self.argument_depth += 1 |
|
reduced_pos = [self.evaluate_statement(arg) for arg in args.arguments] |
|
if any(x is None for x in reduced_pos): |
|
raise InvalidArguments(f'At least one value in the arguments is void.') |
|
reduced_kw: T.Dict[str, InterpreterObject] = {} |
|
for key, val in args.kwargs.items(): |
|
reduced_key = key_resolver(key) |
|
assert isinstance(val, mparser.BaseNode) |
|
reduced_val = self.evaluate_statement(val) |
|
if reduced_val is None: |
|
raise InvalidArguments(f'Value of key {reduced_key} is void.') |
|
if duplicate_key_error and reduced_key in reduced_kw: |
|
raise InvalidArguments(duplicate_key_error.format(reduced_key)) |
|
reduced_kw[reduced_key] = reduced_val |
|
self.argument_depth -= 1 |
|
final_kw = self.expand_default_kwargs(reduced_kw) |
|
return reduced_pos, final_kw |
|
|
|
def expand_default_kwargs(self, kwargs: T.Dict[str, T.Optional[InterpreterObject]]) -> T.Dict[str, T.Optional[InterpreterObject]]: |
|
if 'kwargs' not in kwargs: |
|
return kwargs |
|
to_expand = _unholder(kwargs.pop('kwargs')) |
|
if not isinstance(to_expand, dict): |
|
raise InterpreterException('Value of "kwargs" must be dictionary.') |
|
if 'kwargs' in to_expand: |
|
raise InterpreterException('Kwargs argument must not contain a "kwargs" entry. Points for thinking meta, though. :P') |
|
for k, v in to_expand.items(): |
|
if k in kwargs: |
|
raise InterpreterException(f'Entry "{k}" defined both as a keyword argument and in a "kwarg" entry.') |
|
kwargs[k] = self._holderify(v) |
|
return kwargs |
|
|
|
def assignment(self, node: mparser.AssignmentNode) -> None: |
|
assert isinstance(node, mparser.AssignmentNode) |
|
if self.argument_depth != 0: |
|
raise InvalidArguments(textwrap.dedent('''\ |
|
Tried to assign values inside an argument list. |
|
To specify a keyword argument, use : instead of =. |
|
''')) |
|
var_name = node.var_name |
|
if not isinstance(var_name, str): |
|
raise InvalidArguments('Tried to assign value to a non-variable.') |
|
value = self.evaluate_statement(node.value) |
|
# For mutable objects we need to make a copy on assignment |
|
if isinstance(value, MutableInterpreterObject): |
|
value = copy.deepcopy(value) |
|
self.set_variable(var_name, value) |
|
return None |
|
|
|
def set_variable(self, varname: str, variable: T.Union[TYPE_var, InterpreterObject], *, holderify: bool = False) -> None: |
|
if variable is None: |
|
raise InvalidCode('Can not assign None to variable.') |
|
if holderify: |
|
variable = self._holderify(variable) |
|
else: |
|
# Ensure that we are always storing ObjectHolders |
|
if not isinstance(variable, InterpreterObject): |
|
raise mesonlib.MesonBugException(f'set_variable in InterpreterBase called with a non InterpreterObject {variable} of type {type(variable).__name__}') |
|
if not isinstance(varname, str): |
|
raise InvalidCode('First argument to set_variable must be a string.') |
|
if re.match('[_a-zA-Z][_0-9a-zA-Z]*$', varname) is None: |
|
raise InvalidCode('Invalid variable name: ' + varname) |
|
if varname in self.builtin: |
|
raise InvalidCode('Tried to overwrite internal variable "%s"' % varname) |
|
self.variables[varname] = variable |
|
|
|
def get_variable(self, varname: str) -> InterpreterObject: |
|
if varname in self.builtin: |
|
return self.builtin[varname] |
|
if varname in self.variables: |
|
return self.variables[varname] |
|
raise InvalidCode('Unknown variable "%s".' % varname) |
|
|
|
def validate_extraction(self, buildtarget: mesonlib.HoldableObject) -> None: |
|
raise InterpreterException('validate_extraction is not implemented in this context (please file a bug)')
|
|
|