The Meson Build System http://mesonbuild.com/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1019 lines
40 KiB

# Copyright 2016-2017 The Meson development team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This class contains the basic functionality needed to run any interpreter
# or an interpreter-based tool.
from . import mparser, mesonlib, mlog
from . import environment, dependencies
import os, copy, re, types
from functools import wraps
class ObjectHolder:
def __init__(self, obj, subproject=None):
self.held_object = obj
self.subproject = subproject
def __repr__(self):
return '<Holder: {!r}>'.format(self.held_object)
# Decorators for method calls.
def check_stringlist(a, msg='Arguments must be strings.'):
if not isinstance(a, list):
mlog.debug('Not a list:', str(a))
raise InvalidArguments('Argument not a list.')
if not all(isinstance(s, str) for s in a):
mlog.debug('Element not a string:', str(a))
raise InvalidArguments(msg)
def _get_callee_args(wrapped_args, want_subproject=False):
s = wrapped_args[0]
n = len(wrapped_args)
# Raise an error if the codepaths are not there
subproject = None
if want_subproject and n == 2:
if hasattr(s, 'subproject'):
# Interpreter base types have 2 args: self, node
node_or_state = wrapped_args[1]
# args and kwargs are inside the node
args = None
kwargs = None
subproject = s.subproject
elif hasattr(wrapped_args[1], 'subproject'):
# Module objects have 2 args: self, interpreter
node_or_state = wrapped_args[1]
# args and kwargs are inside the node
args = None
kwargs = None
subproject = wrapped_args[1].subproject
else:
raise AssertionError('Unknown args: {!r}'.format(wrapped_args))
elif n == 3:
# Methods on objects (*Holder, MesonMain, etc) have 3 args: self, args, kwargs
node_or_state = None # FIXME
args = wrapped_args[1]
kwargs = wrapped_args[2]
if want_subproject:
if hasattr(s, 'subproject'):
subproject = s.subproject
elif hasattr(s, 'interpreter'):
subproject = s.interpreter.subproject
elif n == 4:
# Meson functions have 4 args: self, node, args, kwargs
# Module functions have 4 args: self, state, args, kwargs; except,
# PythonInstallation methods have self, interpreter, args, kwargs
node_or_state = wrapped_args[1]
args = wrapped_args[2]
kwargs = wrapped_args[3]
if want_subproject:
if isinstance(s, InterpreterBase):
subproject = s.subproject
else:
subproject = node_or_state.subproject
elif n == 5:
# Module snippets have 5 args: self, interpreter, state, args, kwargs
node_or_state = wrapped_args[2]
args = wrapped_args[3]
kwargs = wrapped_args[4]
if want_subproject:
subproject = node_or_state.subproject
else:
raise AssertionError('Unknown args: {!r}'.format(wrapped_args))
# Sometimes interpreter methods are called internally with None instead of
# empty list/dict
args = args if args is not None else []
kwargs = kwargs if kwargs is not None else {}
return s, node_or_state, args, kwargs, subproject
def flatten(args):
if isinstance(args, mparser.StringNode):
return args.value
if isinstance(args, (int, str, mesonlib.File, InterpreterObject)):
return args
result = []
for a in args:
if isinstance(a, list):
rest = flatten(a)
result = result + rest
elif isinstance(a, mparser.StringNode):
result.append(a.value)
else:
result.append(a)
return result
def noPosargs(f):
@wraps(f)
def wrapped(*wrapped_args, **wrapped_kwargs):
args = _get_callee_args(wrapped_args)[2]
if args:
raise InvalidArguments('Function does not take positional arguments.')
return f(*wrapped_args, **wrapped_kwargs)
return wrapped
def noKwargs(f):
@wraps(f)
def wrapped(*wrapped_args, **wrapped_kwargs):
kwargs = _get_callee_args(wrapped_args)[3]
if kwargs:
raise InvalidArguments('Function does not take keyword arguments.')
return f(*wrapped_args, **wrapped_kwargs)
return wrapped
def stringArgs(f):
@wraps(f)
def wrapped(*wrapped_args, **wrapped_kwargs):
args = _get_callee_args(wrapped_args)[2]
assert(isinstance(args, list))
check_stringlist(args)
return f(*wrapped_args, **wrapped_kwargs)
return wrapped
def noArgsFlattening(f):
setattr(f, 'no-args-flattening', True)
return f
class permittedKwargs:
def __init__(self, permitted):
self.permitted = permitted
def __call__(self, f):
@wraps(f)
def wrapped(*wrapped_args, **wrapped_kwargs):
s, node_or_state, args, kwargs, _ = _get_callee_args(wrapped_args)
loc = types.SimpleNamespace()
if hasattr(s, 'subdir'):
loc.subdir = s.subdir
loc.lineno = s.current_lineno
elif node_or_state and hasattr(node_or_state, 'subdir'):
loc.subdir = node_or_state.subdir
loc.lineno = node_or_state.current_lineno
else:
loc = None
for k in kwargs:
if k not in self.permitted:
mlog.warning('''Passed invalid keyword argument "{}".'''.format(k), location=loc)
mlog.warning('This will become a hard error in the future.')
return f(*wrapped_args, **wrapped_kwargs)
return wrapped
class FeatureCheckBase:
"Base class for feature version checks"
def __init__(self, feature_name, version):
self.feature_name = feature_name
self.feature_version = version
@staticmethod
def get_target_version(subproject):
# Don't do any checks if project() has not been parsed yet
if subproject not in mesonlib.project_meson_versions:
return ''
return mesonlib.project_meson_versions[subproject]
def use(self, subproject):
tv = self.get_target_version(subproject)
# No target version
if tv == '':
return
# Target version is new enough
if mesonlib.version_compare_condition_with_min(tv, self.feature_version):
return
# Feature is too new for target version, register it
if subproject not in self.feature_registry:
self.feature_registry[subproject] = {self.feature_version: set()}
register = self.feature_registry[subproject]
if self.feature_version not in register:
register[self.feature_version] = set()
if self.feature_name in register[self.feature_version]:
# Don't warn about the same feature multiple times
# FIXME: This is needed to prevent duplicate warnings, but also
# means we won't warn about a feature used in multiple places.
return
register[self.feature_version].add(self.feature_name)
self.log_usage_warning(tv)
@classmethod
def report(cls, subproject):
if subproject not in cls.feature_registry:
return
warning_str = cls.get_warning_str_prefix(cls.get_target_version(subproject))
fv = cls.feature_registry[subproject]
for version in sorted(fv.keys()):
warning_str += '\n * {}: {}'.format(version, fv[version])
mlog.warning(warning_str)
def __call__(self, f):
@wraps(f)
def wrapped(*wrapped_args, **wrapped_kwargs):
subproject = _get_callee_args(wrapped_args, want_subproject=True)[4]
if subproject is None:
raise AssertionError('{!r}'.format(wrapped_args))
self.use(subproject)
return f(*wrapped_args, **wrapped_kwargs)
return wrapped
class FeatureNew(FeatureCheckBase):
"""Checks for new features"""
# Class variable, shared across all instances
#
# Format: {subproject: {feature_version: set(feature_names)}}
feature_registry = {}
@staticmethod
def get_warning_str_prefix(tv):
return 'Project specifies a minimum meson_version \'{}\' but uses features which were added in newer versions:'.format(tv)
def log_usage_warning(self, tv):
mlog.warning('Project targetting \'{}\' but tried to use feature introduced '
'in \'{}\': {}'.format(tv, self.feature_version, self.feature_name))
class FeatureDeprecated(FeatureCheckBase):
"""Checks for deprecated features"""
# Class variable, shared across all instances
#
# Format: {subproject: {feature_version: set(feature_names)}}
feature_registry = {}
@staticmethod
def get_warning_str_prefix(tv):
return 'Deprecated features used:'
def log_usage_warning(self, tv):
mlog.deprecation('Project targetting \'{}\' but tried to use feature '
'deprecated since \'{}\': {}'
''.format(tv, self.feature_version, self.feature_name))
class FeatureCheckKwargsBase:
def __init__(self, feature_name, feature_version, kwargs):
self.feature_name = feature_name
self.feature_version = feature_version
self.kwargs = kwargs
def __call__(self, f):
@wraps(f)
def wrapped(*wrapped_args, **wrapped_kwargs):
# Which FeatureCheck class to invoke
FeatureCheckClass = self.feature_check_class
kwargs, subproject = _get_callee_args(wrapped_args, want_subproject=True)[3:5]
if subproject is None:
raise AssertionError('{!r}'.format(wrapped_args))
for arg in self.kwargs:
if arg not in kwargs:
continue
name = arg + ' arg in ' + self.feature_name
FeatureCheckClass(name, self.feature_version).use(subproject)
return f(*wrapped_args, **wrapped_kwargs)
return wrapped
class FeatureNewKwargs(FeatureCheckKwargsBase):
feature_check_class = FeatureNew
class FeatureDeprecatedKwargs(FeatureCheckKwargsBase):
feature_check_class = FeatureDeprecated
class InterpreterException(mesonlib.MesonException):
pass
class InvalidCode(InterpreterException):
pass
class InvalidArguments(InterpreterException):
pass
class SubdirDoneRequest(BaseException):
pass
class ContinueRequest(BaseException):
pass
class BreakRequest(BaseException):
pass
class InterpreterObject:
def __init__(self):
self.methods = {}
def method_call(self, method_name, args, kwargs):
if method_name in self.methods:
method = self.methods[method_name]
if not getattr(method, 'no-args-flattening', False):
args = flatten(args)
return method(args, kwargs)
raise InvalidCode('Unknown method "%s" in object.' % method_name)
class MutableInterpreterObject(InterpreterObject):
def __init__(self):
super().__init__()
class Disabler(InterpreterObject):
def __init__(self):
super().__init__()
self.methods.update({'found': self.found_method})
def found_method(self, args, kwargs):
return False
def is_disabler(i):
return isinstance(i, Disabler)
def is_disabled(args, kwargs):
for i in args:
if isinstance(i, Disabler):
return True
for i in kwargs.values():
if isinstance(i, Disabler):
return True
if isinstance(i, list):
for j in i:
if isinstance(j, Disabler):
return True
return False
class InterpreterBase:
def __init__(self, source_root, subdir):
self.source_root = source_root
self.funcs = {}
self.builtin = {}
self.subdir = subdir
self.variables = {}
self.argument_depth = 0
self.current_lineno = -1
def load_root_meson_file(self):
mesonfile = os.path.join(self.source_root, self.subdir, environment.build_filename)
if not os.path.isfile(mesonfile):
raise InvalidArguments('Missing Meson file in %s' % mesonfile)
with open(mesonfile, encoding='utf8') as mf:
code = mf.read()
if code.isspace():
raise InvalidCode('Builder file is empty.')
assert(isinstance(code, str))
try:
self.ast = mparser.Parser(code, self.subdir).parse()
except mesonlib.MesonException as me:
me.file = environment.build_filename
raise me
def parse_project(self):
"""
Parses project() and initializes languages, compilers etc. Do this
early because we need this before we parse the rest of the AST.
"""
self.evaluate_codeblock(self.ast, end=1)
def sanity_check_ast(self):
if not isinstance(self.ast, mparser.CodeBlockNode):
raise InvalidCode('AST is of invalid type. Possibly a bug in the parser.')
if not self.ast.lines:
raise InvalidCode('No statements in code.')
first = self.ast.lines[0]
if not isinstance(first, mparser.FunctionNode) or first.func_name != 'project':
raise InvalidCode('First statement must be a call to project')
def run(self):
# Evaluate everything after the first line, which is project() because
# we already parsed that in self.parse_project()
try:
self.evaluate_codeblock(self.ast, start=1)
except SubdirDoneRequest:
pass
def evaluate_codeblock(self, node, start=0, end=None):
if node is None:
return
if not isinstance(node, mparser.CodeBlockNode):
e = InvalidCode('Tried to execute a non-codeblock. Possibly a bug in the parser.')
e.lineno = node.lineno
e.colno = node.colno
raise e
statements = node.lines[start:end]
i = 0
while i < len(statements):
cur = statements[i]
try:
self.current_lineno = cur.lineno
self.evaluate_statement(cur)
except Exception as e:
if not hasattr(e, 'lineno'):
e.lineno = cur.lineno
e.colno = cur.colno
e.file = os.path.join(self.subdir, 'meson.build')
raise e
i += 1 # In THE FUTURE jump over blocks and stuff.
def evaluate_statement(self, cur):
if isinstance(cur, mparser.FunctionNode):
return self.function_call(cur)
elif isinstance(cur, mparser.AssignmentNode):
return self.assignment(cur)
elif isinstance(cur, mparser.MethodNode):
return self.method_call(cur)
elif isinstance(cur, mparser.StringNode):
return cur.value
elif isinstance(cur, mparser.BooleanNode):
return cur.value
elif isinstance(cur, mparser.IfClauseNode):
return self.evaluate_if(cur)
elif isinstance(cur, mparser.IdNode):
return self.get_variable(cur.value)
elif isinstance(cur, mparser.ComparisonNode):
return self.evaluate_comparison(cur)
elif isinstance(cur, mparser.ArrayNode):
return self.evaluate_arraystatement(cur)
elif isinstance(cur, mparser.DictNode):
return self.evaluate_dictstatement(cur)
elif isinstance(cur, mparser.NumberNode):
return cur.value
elif isinstance(cur, mparser.AndNode):
return self.evaluate_andstatement(cur)
elif isinstance(cur, mparser.OrNode):
return self.evaluate_orstatement(cur)
elif isinstance(cur, mparser.NotNode):
return self.evaluate_notstatement(cur)
elif isinstance(cur, mparser.UMinusNode):
return self.evaluate_uminusstatement(cur)
elif isinstance(cur, mparser.ArithmeticNode):
return self.evaluate_arithmeticstatement(cur)
elif isinstance(cur, mparser.ForeachClauseNode):
return self.evaluate_foreach(cur)
elif isinstance(cur, mparser.PlusAssignmentNode):
return self.evaluate_plusassign(cur)
elif isinstance(cur, mparser.IndexNode):
return self.evaluate_indexing(cur)
elif isinstance(cur, mparser.TernaryNode):
return self.evaluate_ternary(cur)
elif isinstance(cur, mparser.ContinueNode):
raise ContinueRequest()
elif isinstance(cur, mparser.BreakNode):
raise BreakRequest()
elif self.is_elementary_type(cur):
return cur
else:
raise InvalidCode("Unknown statement.")
def evaluate_arraystatement(self, cur):
(arguments, kwargs) = self.reduce_arguments(cur.args)
if len(kwargs) > 0:
raise InvalidCode('Keyword arguments are invalid in array construction.')
return arguments
@FeatureNew('dict', '0.47.0')
def evaluate_dictstatement(self, cur):
(arguments, kwargs) = self.reduce_arguments(cur.args)
assert (not arguments)
return kwargs
def evaluate_notstatement(self, cur):
v = self.evaluate_statement(cur.value)
if not isinstance(v, bool):
raise InterpreterException('Argument to "not" is not a boolean.')
return not v
def evaluate_if(self, node):
assert(isinstance(node, mparser.IfClauseNode))
for i in node.ifs:
result = self.evaluate_statement(i.condition)
if is_disabler(result):
return result
if not(isinstance(result, bool)):
raise InvalidCode('If clause {!r} does not evaluate to true or false.'.format(result))
if result:
self.evaluate_codeblock(i.block)
return
if not isinstance(node.elseblock, mparser.EmptyNode):
self.evaluate_codeblock(node.elseblock)
def validate_comparison_types(self, val1, val2):
if type(val1) != type(val2):
return False
return True
def evaluate_in(self, val1, val2):
if not isinstance(val1, (str, int, float, ObjectHolder)):
raise InvalidArguments('lvalue of "in" operator must be a string, integer, float, or object')
if not isinstance(val2, (list, dict)):
raise InvalidArguments('rvalue of "in" operator must be an array or a dict')
return val1 in val2
def evaluate_comparison(self, node):
val1 = self.evaluate_statement(node.left)
if is_disabler(val1):
return val1
val2 = self.evaluate_statement(node.right)
if is_disabler(val2):
return val2
if node.ctype == 'in':
return self.evaluate_in(val1, val2)
elif node.ctype == 'notin':
return not self.evaluate_in(val1, val2)
valid = self.validate_comparison_types(val1, val2)
# Ordering comparisons of different types isn't allowed since PR #1810
# (0.41.0). Since PR #2884 we also warn about equality comparisons of
# different types, which will one day become an error.
if not valid and (node.ctype == '==' or node.ctype == '!='):
mlog.warning('''Trying to compare values of different types ({}, {}) using {}.
The result of this is undefined and will become a hard error in a future Meson release.'''
.format(type(val1).__name__, type(val2).__name__, node.ctype), location=node)
if node.ctype == '==':
return val1 == val2
elif node.ctype == '!=':
return val1 != val2
elif not valid:
raise InterpreterException(
'Values of different types ({}, {}) cannot be compared using {}.'.format(type(val1).__name__,
type(val2).__name__,
node.ctype))
elif not self.is_elementary_type(val1):
raise InterpreterException('{} can only be compared for equality.'.format(node.left.value))
elif not self.is_elementary_type(val2):
raise InterpreterException('{} can only be compared for equality.'.format(node.right.value))
elif node.ctype == '<':
return val1 < val2
elif node.ctype == '<=':
return val1 <= val2
elif node.ctype == '>':
return val1 > val2
elif node.ctype == '>=':
return val1 >= val2
else:
raise InvalidCode('You broke my compare eval.')
def evaluate_andstatement(self, cur):
l = self.evaluate_statement(cur.left)
if is_disabler(l):
return l
if not isinstance(l, bool):
raise InterpreterException('First argument to "and" is not a boolean.')
if not l:
return False
r = self.evaluate_statement(cur.right)
if is_disabler(r):
return r
if not isinstance(r, bool):
raise InterpreterException('Second argument to "and" is not a boolean.')
return r
def evaluate_orstatement(self, cur):
l = self.evaluate_statement(cur.left)
if is_disabler(l):
return l
if not isinstance(l, bool):
raise InterpreterException('First argument to "or" is not a boolean.')
if l:
return True
r = self.evaluate_statement(cur.right)
if is_disabler(r):
return r
if not isinstance(r, bool):
raise InterpreterException('Second argument to "or" is not a boolean.')
return r
def evaluate_uminusstatement(self, cur):
v = self.evaluate_statement(cur.value)
if is_disabler(v):
return v
if not isinstance(v, int):
raise InterpreterException('Argument to negation is not an integer.')
return -v
def evaluate_arithmeticstatement(self, cur):
l = self.evaluate_statement(cur.left)
if is_disabler(l):
return l
r = self.evaluate_statement(cur.right)
if is_disabler(r):
return r
if cur.operation == 'add':
if isinstance(l, dict) and isinstance(r, dict):
return {**l, **r}
try:
return l + r
except Exception as e:
raise InvalidCode('Invalid use of addition: ' + str(e))
elif cur.operation == 'sub':
if not isinstance(l, int) or not isinstance(r, int):
raise InvalidCode('Subtraction works only with integers.')
return l - r
elif cur.operation == 'mul':
if not isinstance(l, int) or not isinstance(r, int):
raise InvalidCode('Multiplication works only with integers.')
return l * r
elif cur.operation == 'div':
if not isinstance(l, int) or not isinstance(r, int):
raise InvalidCode('Division works only with integers.')
return l // r
elif cur.operation == 'mod':
if not isinstance(l, int) or not isinstance(r, int):
raise InvalidCode('Modulo works only with integers.')
return l % r
else:
raise InvalidCode('You broke me.')
def evaluate_ternary(self, node):
assert(isinstance(node, mparser.TernaryNode))
result = self.evaluate_statement(node.condition)
if is_disabler(result):
return result
if not isinstance(result, bool):
raise InterpreterException('Ternary condition is not boolean.')
if result:
return self.evaluate_statement(node.trueblock)
else:
return self.evaluate_statement(node.falseblock)
def evaluate_foreach(self, node):
assert(isinstance(node, mparser.ForeachClauseNode))
items = self.evaluate_statement(node.items)
if isinstance(items, list):
if len(node.varnames) != 1:
raise InvalidArguments('Foreach on array does not unpack')
varname = node.varnames[0].value
if is_disabler(items):
return items
for item in items:
self.set_variable(varname, item)
try:
self.evaluate_codeblock(node.block)
except ContinueRequest:
continue
except BreakRequest:
break
elif isinstance(items, dict):
if len(node.varnames) != 2:
raise InvalidArguments('Foreach on dict unpacks key and value')
if is_disabler(items):
return items
for key, value in items.items():
self.set_variable(node.varnames[0].value, key)
self.set_variable(node.varnames[1].value, value)
try:
self.evaluate_codeblock(node.block)
except ContinueRequest:
continue
except BreakRequest:
break
else:
raise InvalidArguments('Items of foreach loop must be an array or a dict')
def evaluate_plusassign(self, node):
assert(isinstance(node, mparser.PlusAssignmentNode))
varname = node.var_name
addition = self.evaluate_statement(node.value)
if is_disabler(addition):
self.set_variable(varname, addition)
return
# Remember that all variables are immutable. We must always create a
# full new variable and then assign it.
old_variable = self.get_variable(varname)
if isinstance(old_variable, str):
if not isinstance(addition, str):
raise InvalidArguments('The += operator requires a string on the right hand side if the variable on the left is a string')
new_value = old_variable + addition
elif isinstance(old_variable, int):
if not isinstance(addition, int):
raise InvalidArguments('The += operator requires an int on the right hand side if the variable on the left is an int')
new_value = old_variable + addition
elif isinstance(old_variable, list):
if isinstance(addition, list):
new_value = old_variable + addition
else:
new_value = old_variable + [addition]
elif isinstance(old_variable, dict):
if not isinstance(addition, dict):
raise InvalidArguments('The += operator requires a dict on the right hand side if the variable on the left is a dict')
new_value = {**old_variable, **addition}
# Add other data types here.
else:
raise InvalidArguments('The += operator currently only works with arrays, dicts, strings or ints ')
self.set_variable(varname, new_value)
def evaluate_indexing(self, node):
assert(isinstance(node, mparser.IndexNode))
iobject = self.evaluate_statement(node.iobject)
if is_disabler(iobject):
return iobject
if not hasattr(iobject, '__getitem__'):
raise InterpreterException(
'Tried to index an object that doesn\'t support indexing.')
index = self.evaluate_statement(node.index)
if isinstance(iobject, dict):
if not isinstance(index, str):
raise InterpreterException('Key is not a string')
try:
return iobject[index]
except KeyError:
raise InterpreterException('Key %s is not in dict' % index)
else:
if not isinstance(index, int):
raise InterpreterException('Index value is not an integer.')
try:
return iobject[index]
except IndexError:
raise InterpreterException('Index %d out of bounds of array of size %d.' % (index, len(iobject)))
def function_call(self, node):
func_name = node.func_name
(posargs, kwargs) = self.reduce_arguments(node.args)
if is_disabled(posargs, kwargs):
return Disabler()
if func_name in self.funcs:
func = self.funcs[func_name]
if not getattr(func, 'no-args-flattening', False):
posargs = flatten(posargs)
return func(node, posargs, kwargs)
else:
self.unknown_function_called(func_name)
def method_call(self, node):
invokable = node.source_object
if isinstance(invokable, mparser.IdNode):
object_name = invokable.value
obj = self.get_variable(object_name)
else:
obj = self.evaluate_statement(invokable)
method_name = node.name
args = node.args
if isinstance(obj, str):
return self.string_method_call(obj, method_name, args)
if isinstance(obj, bool):
return self.bool_method_call(obj, method_name, args)
if isinstance(obj, int):
return self.int_method_call(obj, method_name, args)
if isinstance(obj, list):
return self.array_method_call(obj, method_name, args)
if isinstance(obj, dict):
return self.dict_method_call(obj, method_name, args)
if isinstance(obj, mesonlib.File):
raise InvalidArguments('File object "%s" is not callable.' % obj)
if not isinstance(obj, InterpreterObject):
raise InvalidArguments('Variable "%s" is not callable.' % object_name)
(args, kwargs) = self.reduce_arguments(args)
# Special case. This is the only thing you can do with a disabler
# object. Every other use immediately returns the disabler object.
if isinstance(obj, Disabler) and method_name == 'found':
return False
if is_disabled(args, kwargs):
return Disabler()
if method_name == 'extract_objects':
self.validate_extraction(obj.held_object)
return obj.method_call(method_name, args, kwargs)
def bool_method_call(self, obj, method_name, args):
(posargs, kwargs) = self.reduce_arguments(args)
if is_disabled(posargs, kwargs):
return Disabler()
if method_name == 'to_string':
if not posargs:
if obj:
return 'true'
else:
return 'false'
elif len(posargs) == 2 and isinstance(posargs[0], str) and isinstance(posargs[1], str):
if obj:
return posargs[0]
else:
return posargs[1]
else:
raise InterpreterException('bool.to_string() must have either no arguments or exactly two string arguments that signify what values to return for true and false.')
elif method_name == 'to_int':
if obj:
return 1
else:
return 0
else:
raise InterpreterException('Unknown method "%s" for a boolean.' % method_name)
def int_method_call(self, obj, method_name, args):
(posargs, kwargs) = self.reduce_arguments(args)
if is_disabled(posargs, kwargs):
return Disabler()
if method_name == 'is_even':
if not posargs:
return obj % 2 == 0
else:
raise InterpreterException('int.is_even() must have no arguments.')
elif method_name == 'is_odd':
if not posargs:
return obj % 2 != 0
else:
raise InterpreterException('int.is_odd() must have no arguments.')
elif method_name == 'to_string':
if not posargs:
return str(obj)
else:
raise InterpreterException('int.to_string() must have no arguments.')
else:
raise InterpreterException('Unknown method "%s" for an integer.' % method_name)
@staticmethod
def _get_one_string_posarg(posargs, method_name):
if len(posargs) > 1:
m = '{}() must have zero or one arguments'
raise InterpreterException(m.format(method_name))
elif len(posargs) == 1:
s = posargs[0]
if not isinstance(s, str):
m = '{}() argument must be a string'
raise InterpreterException(m.format(method_name))
return s
return None
def string_method_call(self, obj, method_name, args):
(posargs, kwargs) = self.reduce_arguments(args)
if is_disabled(posargs, kwargs):
return Disabler()
if method_name == 'strip':
s = self._get_one_string_posarg(posargs, 'strip')
if s is not None:
return obj.strip(s)
return obj.strip()
elif method_name == 'format':
return self.format_string(obj, args)
elif method_name == 'to_upper':
return obj.upper()
elif method_name == 'to_lower':
return obj.lower()
elif method_name == 'underscorify':
return re.sub(r'[^a-zA-Z0-9]', '_', obj)
elif method_name == 'split':
s = self._get_one_string_posarg(posargs, 'split')
if s is not None:
return obj.split(s)
return obj.split()
elif method_name == 'startswith' or method_name == 'contains' or method_name == 'endswith':
s = posargs[0]
if not isinstance(s, str):
raise InterpreterException('Argument must be a string.')
if method_name == 'startswith':
return obj.startswith(s)
elif method_name == 'contains':
return obj.find(s) >= 0
return obj.endswith(s)
elif method_name == 'to_int':
try:
return int(obj)
except Exception:
raise InterpreterException('String {!r} cannot be converted to int'.format(obj))
elif method_name == 'join':
if len(posargs) != 1:
raise InterpreterException('Join() takes exactly one argument.')
strlist = posargs[0]
check_stringlist(strlist)
return obj.join(strlist)
elif method_name == 'version_compare':
if len(posargs) != 1:
raise InterpreterException('Version_compare() takes exactly one argument.')
cmpr = posargs[0]
if not isinstance(cmpr, str):
raise InterpreterException('Version_compare() argument must be a string.')
return mesonlib.version_compare(obj, cmpr)
raise InterpreterException('Unknown method "%s" for a string.' % method_name)
def unknown_function_called(self, func_name):
raise InvalidCode('Unknown function "%s".' % func_name)
def array_method_call(self, obj, method_name, args):
(posargs, kwargs) = self.reduce_arguments(args)
if is_disabled(posargs, kwargs):
return Disabler()
if method_name == 'contains':
return self.check_contains(obj, posargs)
elif method_name == 'length':
return len(obj)
elif method_name == 'get':
index = posargs[0]
fallback = None
if len(posargs) == 2:
fallback = posargs[1]
elif len(posargs) > 2:
m = 'Array method \'get()\' only takes two arguments: the ' \
'index and an optional fallback value if the index is ' \
'out of range.'
raise InvalidArguments(m)
if not isinstance(index, int):
raise InvalidArguments('Array index must be a number.')
if index < -len(obj) or index >= len(obj):
if fallback is None:
m = 'Array index {!r} is out of bounds for array of size {!r}.'
raise InvalidArguments(m.format(index, len(obj)))
return fallback
return obj[index]
m = 'Arrays do not have a method called {!r}.'
raise InterpreterException(m.format(method_name))
def dict_method_call(self, obj, method_name, args):
(posargs, kwargs) = self.reduce_arguments(args)
if is_disabled(posargs, kwargs):
return Disabler()
if method_name in ('has_key', 'get'):
if method_name == 'has_key':
if len(posargs) != 1:
raise InterpreterException('has_key() takes exactly one argument.')
else:
if len(posargs) not in (1, 2):
raise InterpreterException('get() takes one or two arguments.')
key = posargs[0]
if not isinstance(key, (str)):
raise InvalidArguments('Dictionary key must be a string.')
has_key = key in obj
if method_name == 'has_key':
return has_key
if has_key:
return obj[key]
if len(posargs) == 2:
return posargs[1]
raise InterpreterException('Key {!r} is not in the dictionary.'.format(key))
if method_name == 'keys':
if len(posargs) != 0:
raise InterpreterException('keys() takes no arguments.')
return list(obj.keys())
raise InterpreterException('Dictionaries do not have a method called "%s".' % method_name)
def reduce_arguments(self, args):
assert(isinstance(args, mparser.ArgumentNode))
if args.incorrect_order():
raise InvalidArguments('All keyword arguments must be after positional arguments.')
self.argument_depth += 1
reduced_pos = [self.evaluate_statement(arg) for arg in args.arguments]
reduced_kw = {}
for key in args.kwargs.keys():
if not isinstance(key, str):
raise InvalidArguments('Keyword argument name is not a string.')
a = args.kwargs[key]
reduced_kw[key] = self.evaluate_statement(a)
self.argument_depth -= 1
return reduced_pos, reduced_kw
def assignment(self, node):
assert(isinstance(node, mparser.AssignmentNode))
if self.argument_depth != 0:
raise InvalidArguments('''Tried to assign values inside an argument list.
To specify a keyword argument, use : instead of =.''')
var_name = node.var_name
if not isinstance(var_name, str):
raise InvalidArguments('Tried to assign value to a non-variable.')
value = self.evaluate_statement(node.value)
if not self.is_assignable(value):
raise InvalidCode('Tried to assign an invalid value to variable.')
# For mutable objects we need to make a copy on assignment
if isinstance(value, MutableInterpreterObject):
value = copy.deepcopy(value)
self.set_variable(var_name, value)
return None
def set_variable(self, varname, variable):
if variable is None:
raise InvalidCode('Can not assign None to variable.')
if not isinstance(varname, str):
raise InvalidCode('First argument to set_variable must be a string.')
if not self.is_assignable(variable):
raise InvalidCode('Assigned value not of assignable type.')
if re.match('[_a-zA-Z][_0-9a-zA-Z]*$', varname) is None:
raise InvalidCode('Invalid variable name: ' + varname)
if varname in self.builtin:
raise InvalidCode('Tried to overwrite internal variable "%s"' % varname)
self.variables[varname] = variable
def get_variable(self, varname):
if varname in self.builtin:
return self.builtin[varname]
if varname in self.variables:
return self.variables[varname]
raise InvalidCode('Unknown variable "%s".' % varname)
def is_assignable(self, value):
return isinstance(value, (InterpreterObject, dependencies.Dependency,
str, int, list, dict, mesonlib.File))
def is_elementary_type(self, v):
return isinstance(v, (int, float, str, bool, list))