# Copyright 2012-2016 The Meson development team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import configparser, os, platform, re, sys, shlex, shutil, subprocess import typing from . import coredata from .linkers import ArLinker, ArmarLinker, VisualStudioLinker, DLinker, CcrxLinker from . import mesonlib from .mesonlib import ( MesonException, EnvironmentException, MachineChoice, PerMachine, Popen_safe, ) from . import mlog from .envconfig import ( BinaryTable, Directories, MachineInfo, MachineInfos, MesonConfigFile, PerMachineDefaultable, Properties, known_cpu_families, ) from . import compilers from .compilers import ( CompilerType, is_assembly, is_header, is_library, is_llvm_ir, is_object, is_source, ) from .compilers import ( Compiler, ArmCCompiler, ArmCPPCompiler, ArmclangCCompiler, ArmclangCPPCompiler, ClangCCompiler, ClangCPPCompiler, ClangObjCCompiler, ClangObjCPPCompiler, ClangClCCompiler, ClangClCPPCompiler, FlangFortranCompiler, G95FortranCompiler, GnuCCompiler, GnuCPPCompiler, GnuFortranCompiler, GnuObjCCompiler, GnuObjCPPCompiler, ElbrusCCompiler, ElbrusCPPCompiler, ElbrusFortranCompiler, IntelCCompiler, IntelCPPCompiler, IntelFortranCompiler, JavaCompiler, MonoCompiler, CudaCompiler, VisualStudioCsCompiler, NAGFortranCompiler, Open64FortranCompiler, PathScaleFortranCompiler, PGICCompiler, PGICPPCompiler, PGIFortranCompiler, RustCompiler, CcrxCCompiler, CcrxCPPCompiler, SunFortranCompiler, ValaCompiler, VisualStudioCCompiler, VisualStudioCPPCompiler, ) build_filename = 'meson.build' def detect_gcovr(version='3.1', log=False): gcovr_exe = 'gcovr' try: p, found = Popen_safe([gcovr_exe, '--version'])[0:2] except (FileNotFoundError, PermissionError): # Doesn't exist in PATH or isn't executable return None, None found = search_version(found) if p.returncode == 0: if log: mlog.log('Found gcovr-{} at {}'.format(found, shlex.quote(shutil.which(gcovr_exe)))) return gcovr_exe, mesonlib.version_compare(found, '>=' + version) return None, None def find_coverage_tools(): gcovr_exe, gcovr_new_rootdir = detect_gcovr() lcov_exe = 'lcov' genhtml_exe = 'genhtml' if not mesonlib.exe_exists([lcov_exe, '--version']): lcov_exe = None if not mesonlib.exe_exists([genhtml_exe, '--version']): genhtml_exe = None return gcovr_exe, gcovr_new_rootdir, lcov_exe, genhtml_exe def detect_ninja(version='1.5', log=False): env_ninja = os.environ.get('NINJA', None) for n in [env_ninja] if env_ninja else ['ninja', 'ninja-build', 'samu']: try: p, found = Popen_safe([n, '--version'])[0:2] except (FileNotFoundError, PermissionError): # Doesn't exist in PATH or isn't executable continue found = found.strip() # Perhaps we should add a way for the caller to know the failure mode # (not found or too old) if p.returncode == 0 and mesonlib.version_compare(found, '>=' + version): n = shutil.which(n) if log: name = os.path.basename(n) if name.endswith('-' + found): name = name[0:-1 - len(found)] if name == 'ninja-build': name = 'ninja' if name == 'samu': name = 'samurai' mlog.log('Found {}-{} at {}'.format(name, found, shlex.quote(n))) return n def detect_native_windows_arch(): """ The architecture of Windows itself: x86, amd64 or arm64 """ # These env variables are always available. See: # https://msdn.microsoft.com/en-us/library/aa384274(VS.85).aspx # https://blogs.msdn.microsoft.com/david.wang/2006/03/27/howto-detect-process-bitness/ arch = os.environ.get('PROCESSOR_ARCHITEW6432', '').lower() if not arch: try: # If this doesn't exist, something is messing with the environment arch = os.environ['PROCESSOR_ARCHITECTURE'].lower() except KeyError: raise EnvironmentException('Unable to detect native OS architecture') return arch def detect_windows_arch(compilers): """ Detecting the 'native' architecture of Windows is not a trivial task. We cannot trust that the architecture that Python is built for is the 'native' one because you can run 32-bit apps on 64-bit Windows using WOW64 and people sometimes install 32-bit Python on 64-bit Windows. We also can't rely on the architecture of the OS itself, since it's perfectly normal to compile and run 32-bit applications on Windows as if they were native applications. It's a terrible experience to require the user to supply a cross-info file to compile 32-bit applications on 64-bit Windows. Thankfully, the only way to compile things with Visual Studio on Windows is by entering the 'msvc toolchain' environment, which can be easily detected. In the end, the sanest method is as follows: 1. Check environment variables that are set by Windows and WOW64 to find out if this is x86 (possibly in WOW64), if so use that as our 'native' architecture. 2. If the compiler toolchain target architecture is x86, use that as our 'native' architecture. 3. Otherwise, use the actual Windows architecture """ os_arch = detect_native_windows_arch() if os_arch == 'x86': return os_arch # If we're on 64-bit Windows, 32-bit apps can be compiled without # cross-compilation. So if we're doing that, just set the native arch as # 32-bit and pretend like we're running under WOW64. Else, return the # actual Windows architecture that we deduced above. for compiler in compilers.values(): if compiler.id == 'msvc' and compiler.target == 'x86': return 'x86' if compiler.id == 'clang-cl' and compiler.target == 'x86': return 'x86' if compiler.id == 'gcc' and compiler.has_builtin_define('__i386__'): return 'x86' return os_arch def any_compiler_has_define(compilers, define): for c in compilers.values(): try: if c.has_builtin_define(define): return True except mesonlib.MesonException: # Ignore compilers that do not support has_builtin_define. pass return False def detect_cpu_family(compilers): """ Python is inconsistent in its platform module. It returns different values for the same cpu. For x86 it might return 'x86', 'i686' or somesuch. Do some canonicalization. """ if mesonlib.is_windows(): trial = detect_windows_arch(compilers) else: trial = platform.machine().lower() if trial.startswith('i') and trial.endswith('86'): trial = 'x86' elif trial == 'bepc': trial = 'x86' # OpenBSD's 64 bit arm architecute identifies as 'arm64' elif trial == 'arm64': trial = 'aarch64' elif trial.startswith('arm'): trial = 'arm' elif trial.startswith('ppc64'): trial = 'ppc64' elif trial == 'macppc': trial = 'ppc' elif trial == 'powerpc': trial = 'ppc' # FreeBSD calls both ppc and ppc64 "powerpc". # https://github.com/mesonbuild/meson/issues/4397 try: p, stdo, _ = Popen_safe(['uname', '-p']) except (FileNotFoundError, PermissionError): # Not much to go on here. if sys.maxsize > 2**32: trial = 'ppc64' if 'powerpc64' in stdo: trial = 'ppc64' elif trial in ('amd64', 'x64'): trial = 'x86_64' # On Linux (and maybe others) there can be any mixture of 32/64 bit code in # the kernel, Python, system, 32-bit chroot on 64-bit host, etc. The only # reliable way to know is to check the compiler defines. if trial == 'x86_64': if any_compiler_has_define(compilers, '__i386__'): trial = 'x86' elif trial == 'aarch64': if any_compiler_has_define(compilers, '__arm__'): trial = 'arm' # Add more quirks here as bugs are reported. Keep in sync with detect_cpu() # below. elif trial == 'parisc64': # ATM there is no 64 bit userland for PA-RISC. Thus always # report it as 32 bit for simplicity. trial = 'parisc' if trial not in known_cpu_families: mlog.warning('Unknown CPU family {!r}, please report this at ' 'https://github.com/mesonbuild/meson/issues/new with the' 'output of `uname -a` and `cat /proc/cpuinfo`'.format(trial)) return trial def detect_cpu(compilers): if mesonlib.is_windows(): trial = detect_windows_arch(compilers) else: trial = platform.machine().lower() if trial in ('amd64', 'x64'): trial = 'x86_64' if trial == 'x86_64': # Same check as above for cpu_family if any_compiler_has_define(compilers, '__i386__'): trial = 'i686' # All 64 bit cpus have at least this level of x86 support. elif trial == 'aarch64': # Same check as above for cpu_family if any_compiler_has_define(compilers, '__arm__'): trial = 'arm' elif trial == 'e2k': # Make more precise CPU detection for Elbrus platform. trial = platform.processor().lower() # Add more quirks here as bugs are reported. Keep in sync with # detect_cpu_family() above. return trial def detect_system(): system = platform.system().lower() if system.startswith('cygwin'): return 'cygwin' return system def detect_msys2_arch(): if 'MSYSTEM_CARCH' in os.environ: return os.environ['MSYSTEM_CARCH'] return None def detect_machine_info(compilers = None) -> MachineInfo: """Detect the machine we're running on If compilers are not provided, we cannot know as much. None out those fields to avoid accidentally depending on partial knowledge. The underlying ''detect_*'' method can be called to explicitly use the partial information. """ return MachineInfo( detect_system(), detect_cpu_family(compilers) if compilers is not None else None, detect_cpu(compilers) if compilers is not None else None, sys.byteorder) # TODO make this compare two `MachineInfo`s purely. How important is the # `detect_cpu_family({})` distinction? It is the one impediment to that. def machine_info_can_run(machine_info: MachineInfo): """Whether we can run binaries for this machine on the current machine. Can almost always run 32-bit binaries on 64-bit natively if the host and build systems are the same. We don't pass any compilers to detect_cpu_family() here because we always want to know the OS architecture, not what the compiler environment tells us. """ if machine_info.system != detect_system(): return False true_build_cpu_family = detect_cpu_family({}) return \ (machine_info.cpu_family == true_build_cpu_family) or \ ((true_build_cpu_family == 'x86_64') and (machine_info.cpu_family == 'x86')) def search_version(text): # Usually of the type 4.1.4 but compiler output may contain # stuff like this: # (Sourcery CodeBench Lite 2014.05-29) 4.8.3 20140320 (prerelease) # Limiting major version number to two digits seems to work # thus far. When we get to GCC 100, this will break, but # if we are still relevant when that happens, it can be # considered an achievement in itself. # # This regex is reaching magic levels. If it ever needs # to be updated, do not complexify but convert to something # saner instead. # We'll demystify it a bit with a verbose definition. version_regex = re.compile(r""" (? 1: version = parts[1] return JavaCompiler(exelist, version) raise EnvironmentException('Unknown compiler "' + ' '.join(exelist) + '"') def detect_cs_compiler(self): compilers, ccache, is_cross, exe_wrap = self._get_compilers('cs', False) popen_exceptions = {} for comp in compilers: if not isinstance(comp, list): comp = [comp] try: p, out, err = Popen_safe(comp + ['--version']) except OSError as e: popen_exceptions[' '.join(comp + ['--version'])] = e continue version = search_version(out) if 'Mono' in out: return MonoCompiler(comp, version) elif "Visual C#" in out: return VisualStudioCsCompiler(comp, version) self._handle_exceptions(popen_exceptions, compilers) def detect_vala_compiler(self): exelist = self.binaries.host.lookup_entry('vala') if exelist is None: # TODO support fallback exelist = [self.default_vala[0]] try: p, out = Popen_safe(exelist + ['--version'])[0:2] except OSError: raise EnvironmentException('Could not execute Vala compiler "%s"' % ' '.join(exelist)) version = search_version(out) if 'Vala' in out: return ValaCompiler(exelist, version) raise EnvironmentException('Unknown compiler "' + ' '.join(exelist) + '"') def detect_rust_compiler(self, want_cross): popen_exceptions = {} compilers, ccache, is_cross, exe_wrap = self._get_compilers('rust', want_cross) for compiler in compilers: if isinstance(compiler, str): compiler = [compiler] arg = ['--version'] try: p, out = Popen_safe(compiler + arg)[0:2] except OSError as e: popen_exceptions[' '.join(compiler + arg)] = e continue version = search_version(out) if 'rustc' in out: return RustCompiler(compiler, version, is_cross, exe_wrap) self._handle_exceptions(popen_exceptions, compilers) def detect_d_compiler(self, want_cross): is_cross = want_cross and self.is_cross_build() exelist = self.binaries.host.lookup_entry('d') # Search for a D compiler. # We prefer LDC over GDC unless overridden with the DC # environment variable because LDC has a much more # up to date language version at time (2016). if exelist is not None: if os.path.basename(exelist[-1]).startswith(('ldmd', 'gdmd')): raise EnvironmentException('Meson doesn\'t support %s as it\'s only a DMD frontend for another compiler. Please provide a valid value for DC or unset it so that Meson can resolve the compiler by itself.' % exelist[-1]) else: for d in self.default_d: if shutil.which(d): exelist = [d] break else: raise EnvironmentException('Could not find any supported D compiler.') try: p, out = Popen_safe(exelist + ['--version'])[0:2] except OSError: raise EnvironmentException('Could not execute D compiler "%s"' % ' '.join(exelist)) version = search_version(out) full_version = out.split('\n', 1)[0] # Detect the target architecture, required for proper architecture handling on Windows. c_compiler = {} is_msvc = mesonlib.is_windows() and 'VCINSTALLDIR' in os.environ if is_msvc: c_compiler = {'c': self.detect_c_compiler(want_cross)} # MSVC compiler is required for correct platform detection. arch = detect_cpu_family(c_compiler) if is_msvc and arch == 'x86': arch = 'x86_mscoff' if 'LLVM D compiler' in out: return compilers.LLVMDCompiler(exelist, version, is_cross, arch, full_version=full_version) elif 'gdc' in out: return compilers.GnuDCompiler(exelist, version, is_cross, arch, full_version=full_version) elif 'The D Language Foundation' in out or 'Digital Mars' in out: return compilers.DmdDCompiler(exelist, version, is_cross, arch, full_version=full_version) raise EnvironmentException('Unknown compiler "' + ' '.join(exelist) + '"') def detect_swift_compiler(self): exelist = self.binaries.host.lookup_entry('swift') if exelist is None: # TODO support fallback exelist = [self.default_swift[0]] try: p, _, err = Popen_safe(exelist + ['-v']) except OSError: raise EnvironmentException('Could not execute Swift compiler "%s"' % ' '.join(exelist)) version = search_version(err) if 'Swift' in err: return compilers.SwiftCompiler(exelist, version) raise EnvironmentException('Unknown compiler "' + ' '.join(exelist) + '"') def compiler_from_language(self, lang: str, want_cross: bool): if lang == 'c': comp = self.detect_c_compiler(want_cross) elif lang == 'cpp': comp = self.detect_cpp_compiler(want_cross) elif lang == 'objc': comp = self.detect_objc_compiler(want_cross) elif lang == 'cuda': comp = self.detect_cuda_compiler(want_cross) elif lang == 'objcpp': comp = self.detect_objcpp_compiler(want_cross) elif lang == 'java': comp = self.detect_java_compiler() # Java is platform independent. elif lang == 'cs': comp = self.detect_cs_compiler() # C# is platform independent. elif lang == 'vala': comp = self.detect_vala_compiler() # Vala compiles to platform-independent C elif lang == 'd': comp = self.detect_d_compiler(want_cross) elif lang == 'rust': comp = self.detect_rust_compiler(want_cross) elif lang == 'fortran': comp = self.detect_fortran_compiler(want_cross) elif lang == 'swift': if want_cross: raise EnvironmentException('Cross compilation with Swift is not working yet.') comp = self.detect_swift_compiler() else: comp = None return comp def detect_compilers(self, lang: str, need_cross_compiler: bool): comp = self.compiler_from_language(lang, False) if need_cross_compiler: cross_comp = self.compiler_from_language(lang, True) else: cross_comp = None if comp is not None: self.coredata.process_new_compilers(lang, comp, cross_comp, self) return comp, cross_comp def detect_static_linker(self, compiler): for_machine = MachineChoice.HOST if compiler.is_cross else MachineChoice.BUILD linker = self.binaries[for_machine].lookup_entry('ar') if linker is not None: linkers = [linker] else: evar = 'AR' if isinstance(compiler, compilers.CudaCompiler): linkers = [self.cuda_static_linker, self.default_static_linker] elif evar in os.environ: linkers = [shlex.split(os.environ[evar])] elif isinstance(compiler, compilers.VisualStudioCCompiler): linkers = [self.vs_static_linker, self.clang_cl_static_linker] elif isinstance(compiler, compilers.GnuCompiler): # Use gcc-ar if available; needed for LTO linkers = [self.gcc_static_linker, self.default_static_linker] elif isinstance(compiler, compilers.ClangCompiler): # Use llvm-ar if available; needed for LTO linkers = [self.clang_static_linker, self.default_static_linker] elif isinstance(compiler, compilers.DCompiler): # Prefer static linkers over linkers used by D compilers if mesonlib.is_windows(): linkers = [self.vs_static_linker, self.clang_cl_static_linker, compiler.get_linker_exelist()] else: linkers = [self.default_static_linker, compiler.get_linker_exelist()] else: linkers = [self.default_static_linker] popen_exceptions = {} for linker in linkers: if not set(['lib', 'lib.exe', 'llvm-lib', 'llvm-lib.exe']).isdisjoint(linker): arg = '/?' else: arg = '--version' try: p, out, err = Popen_safe(linker + [arg]) except OSError as e: popen_exceptions[' '.join(linker + [arg])] = e continue if '/OUT:' in out.upper() or '/OUT:' in err.upper(): return VisualStudioLinker(linker, getattr(compiler, 'machine', None)) if p.returncode == 0 and ('armar' in linker or 'armar.exe' in linker): return ArmarLinker(linker) if 'DMD32 D Compiler' in out or 'DMD64 D Compiler' in out: return DLinker(linker, compiler.arch) if 'LDC - the LLVM D compiler' in out: return DLinker(linker, compiler.arch) if 'GDC' in out and ' based on D ' in out: return DLinker(linker, compiler.arch) if err.startswith('Renesas') and ('rlink' in linker or 'rlink.exe' in linker): return CcrxLinker(linker) if p.returncode == 0: return ArLinker(linker) if p.returncode == 1 and err.startswith('usage'): # OSX return ArLinker(linker) if p.returncode == 1 and err.startswith('Usage'): # AIX return ArLinker(linker) self._handle_exceptions(popen_exceptions, linkers, 'linker') raise EnvironmentException('Unknown static linker "%s"' % ' '.join(linkers)) def detect_build_machine(self, compilers = None): self.machines.build = detect_machine_info(compilers) def get_source_dir(self): return self.source_dir def get_build_dir(self): return self.build_dir def get_exe_suffix(self): return self.exe_suffix def get_import_lib_dir(self) -> str: "Install dir for the import library (library used for linking)" return self.get_libdir() def get_shared_module_dir(self) -> str: "Install dir for shared modules that are loaded at runtime" return self.get_libdir() def get_shared_lib_dir(self) -> str: "Install dir for the shared library" if self.win_libdir_layout: return self.get_bindir() return self.get_libdir() def get_static_lib_dir(self) -> str: "Install dir for the static library" return self.get_libdir() def get_object_suffix(self): return self.object_suffix def get_prefix(self) -> str: return self.coredata.get_builtin_option('prefix') def get_libdir(self) -> str: return self.coredata.get_builtin_option('libdir') def get_libexecdir(self) -> str: return self.coredata.get_builtin_option('libexecdir') def get_bindir(self) -> str: return self.coredata.get_builtin_option('bindir') def get_includedir(self) -> str: return self.coredata.get_builtin_option('includedir') def get_mandir(self) -> str: return self.coredata.get_builtin_option('mandir') def get_datadir(self) -> str: return self.coredata.get_builtin_option('datadir') def get_compiler_system_dirs(self): for comp in self.coredata.compilers.values(): if isinstance(comp, compilers.ClangCompiler): index = 1 break elif isinstance(comp, compilers.GnuCompiler): index = 2 break else: # This option is only supported by gcc and clang. If we don't get a # GCC or Clang compiler return and empty list. return [] p, out, _ = Popen_safe(comp.get_exelist() + ['-print-search-dirs']) if p.returncode != 0: raise mesonlib.MesonException('Could not calculate system search dirs') out = out.split('\n')[index].lstrip('libraries: =').split(':') return [os.path.normpath(p) for p in out] def need_exe_wrapper(self, for_machine: MachineChoice = MachineChoice.HOST): value = self.properties[for_machine].get('needs_exe_wrapper', None) if value is not None: return value return not machine_info_can_run(self.machines[for_machine]) def get_exe_wrapper(self): if not self.need_exe_wrapper(): from .dependencies import EmptyExternalProgram return EmptyExternalProgram() return self.exe_wrapper