# GNOME module This module provides helper tools for build operations needed when building Gnome/GLib programs. **Note**: the compilation commands here might not work properly when you change the source files. This is a bug in the respective compilers which do not expose the required dependency information. This has been reported upstream in [this bug]. Until this is fixed you need to be careful when changing your source files. [this bug]: https://bugzilla.gnome.org/show_bug.cgi?id=745754 ## Usage To use this module, just do: **`gnome = import('gnome')`**. The following functions will then be available as methods on the object with the name `gnome`. You can, of course, replace the name `gnome` with anything else. ### gnome.compile_resources() ``` gnome.compile_resources(id: string, input_file: string | File, build_by_default: bool = false, c_name: string | None = None, dependencies: [](File, CustomTarget, CustomTargetIndex) = [], export: bool = false, extra_args: []string = [], gresource_bundle: bool = false, install_dir: string | None = None, source_dir: [string] = [], ): (CustomTarget, CustomTarget) | CustomTarget ``` This function compiles resources specified in an XML file into code that can be embedded inside the main binary. Similar a build target it takes two positional arguments. The first one is the name of the resource and the second is the XML file containing the resource definitions. If the name is `foobar`, Meson will generate a header file called `foobar.h`, which you can then include in your sources. * `c_name`: passed to the resource compiler as an argument after `--c-name` * `dependencies`: extra targets to depend upon for building * `export`: (*Added 0.37.0*) if true, export the symbols of the generated sources * `extra_args`: extra command line arguments to pass to the resource * `gresource_bundle`: (*Added 0.37.0*) if true, output a `.gresource` file instead of source * `install`: (*Added 0.37.0*) if true, install the gresource file * `install_dir`: (*Added 0.37.0*) location to install the header or bundle depending on previous options * `install_header`: (*Added 0.37.0*) if true, install the header file * `source_dir`: a list of directories where the resource compiler should look up the files Returns an array containing: `[c_source, header_file]` or `[gresource_bundle]` Example: ```meson gnome = import('gnome') asresources = gnome.compile_resources( 'as-resources', 'data/asresources.gresource.xml', source_dir: 'data', c_name: 'as' ) executable( meson.project_name(), asresources, dependencies: my_deps, install: true ) ``` ### gnome.generate_gir() Generates GObject introspection data. Takes one or more positional arguments: Either one or more library objects you want to build gir data for, or a single executable object. There are several keyword arguments. Many of these map directly to the `g-ir-scanner` tool so see its documentation for more information. * `dependencies`: deps to use during introspection scanning * `extra_args`: command line arguments to pass to gir compiler * `export_packages`: extra packages the gir file exports * `sources`: the list of sources to be scanned for gir data * `nsversion`: namespace version * `namespace`: the namespace for this gir object which determines output files * `identifier_prefix`: the identifier prefix for the gir object, e.g. `Gtk` * `includes`: list of gir names to be included, can also be a GirTarget * `header`: *(Added 0.43.0)* name of main c header to include for the library, e.g. `glib.h` * `include_directories`: extra include paths to look for gir files * `install`: if true, install the generated files * `install_dir_gir`: (*Added 0.35.0*) which directory to install the gir file into; can be false to disable installation * `install_dir_typelib`: (*Added 0.35.0*) which directory to install the typelib file into; can be false to disable installation * `link_with`: list of libraries to link with * `symbol_prefix`: the symbol prefix for the gir object, e.g. `gtk`, (*Since 0.43.0*) an ordered list of multiple prefixes is allowed * `fatal_warnings`: *Since 0.55.0* turn scanner warnings into fatal errors. Returns an array of two elements which are: `[gir_target, typelib_target]` ### gnome.genmarshal() Generates a marshal file using the `glib-genmarshal` tool. The first argument is the basename of the output files. * `depends` [](BuildTarget | CustomTarget | CustomTargetIndex): passed directly to CustomTarget (*since 0.61.0*) * `depend_files` [](str | File): Passed directly to CustomTarget (*since 0.61.0*) * `extra_args`: (*Added 0.42.0*) additional command line arguments to pass * `install_dir`: directory to install header to * `install_header`: if true, install the generated header * `install_dir`: directory to install header to * `install_header`: if true, install the generated header * `internal`: if true, mark generated sources as internal to `glib-genmarshal` (*Requires GLib 2.54*) * `nostdinc`: if true, don't include the standard marshallers from glib * `prefix`: the prefix to use for symbols * `skip_source`: if true, skip source location comments * `sources` []str *required*: List of string sources to consume * `sources`: the list of sources to use as inputs * `stdinc`: if true, include the standard marshallers from glib * `valist_marshallers`: if true, generate va_list marshallers *Added 0.35.0* Returns an array of two elements which are: `[c_source, header_file]` ### gnome.mkenums() Generates enum files for GObject using the `glib-mkenums` tool. The first argument is the base name of the output files, unless `c_template` and `h_template` are specified. In this case, the output files will be the base name of the values passed as templates. This method is essentially a wrapper around the `glib-mkenums` tool's command line API. It is the most featureful method for enum creation. Typically you either provide template files or you specify the various template sections manually as strings. Most libraries and applications will be using the same standard template with only minor tweaks, in which case the `gnome.mkenums_simple()` convenience method can be used instead. Note that if you `#include` the generated header in any of the sources for a build target, you must add the generated header to the build target's list of sources to codify the dependency. This is true for all generated sources, not just `mkenums`. * `c_template`: template to use for generating the source * `comments`: comment passed to the command * `h_template`: template to use for generating the header * `identifier_prefix`: prefix to use for the identifiers * `install_header`: if true, install the generated header * `install_dir`: directory to install the header * `sources`: the list of sources to make enums with * `symbol_prefix`: prefix to use for the symbols * `eprod`: enum text * `fhead`: file header * `fprod`: file text * `ftail`: file tail * `vhead`: value text * `vtail`: value tail *Added 0.35.0* Returns an array of two elements which are: `[c_source, header_file]` ### gnome.mkenums_simple() Generates enum `.c` and `.h` files for GObject using the `glib-mkenums` tool with the standard template used by most GObject-based C libraries. The first argument is the base name of the output files. Note that if you `#include` the generated header in any of the sources for a build target, you must add the generated header to the build target's list of sources to codify the dependency. This is true for all generated sources, not just `mkenums_simple`. * `body_prefix`: additional prefix at the top of the body file, e.g. for extra includes * `decorator`: optional decorator for the function declarations, e.g. `GTK_AVAILABLE` or `GST_EXPORT` * `function_prefix`: additional prefix for function names, e.g. in case you want to add a leading underscore to functions used only internally * `header_prefix`: additional prefix at the top of the header file, e.g. for extra includes (which may be needed if you specify a decorator for the function declarations) * `install_header`: if true, install the generated header * `install_dir`: directory to install the header * `identifier_prefix`: prefix to use for the identifiers * `sources`: the list of sources to make enums with * `symbol_prefix`: prefix to use for the symbols Example: ```meson gnome = import('gnome') my_headers = ['myheader1.h', 'myheader2.h'] my_sources = ['mysource1.c', 'mysource2.c'] # will generate myenums.c and myenums.h based on enums in myheader1.h and myheader2.h enums = gnome.mkenums_simple('myenums', sources : my_headers) mylib = library('my', my_sources, enums, include_directories: my_incs, dependencies: my_deps, c_args: my_cargs, install: true) ``` *Added 0.42.0* Returns an array of two elements which are: `[c_source, header_file]` ### gnome.compile_schemas() When called, this method will compile the gschemas in the current directory. Note that this is not for installing schemas and is only useful when running the application locally for example during tests. * `build_by_default`: causes, when set to true, to have this target be built by default, that is, when invoking plain `meson compile`, the default value is true for all built target types * `depend_files`: files ([[@str]], [[files]], or [[configure_file]]) of schema source XML files that should trigger a re-compile if changed. ### gnome.gdbus_codegen() Compiles the given XML schema into gdbus source code. Takes two positional arguments, the first one specifies the base name to use while creating the output source and header and the second specifies one XML file. * `sources`: list of XML files * `interface_prefix`: prefix for the interface * `namespace`: namespace of the interface * `extra_args`: (*Added 0.47.0*) additional command line arguments to pass * `autocleanup`: *(Added 0.47.0)* if set generates autocleanup code. Can be one of `none`, `objects` or `all` * `object_manager`: *(Added 0.40.0)* if true generates object manager code * `annotations`: *(Added 0.43.0)* list of lists of 3 strings for the annotation for `'ELEMENT', 'KEY', 'VALUE'` * `docbook`: *(Added 0.43.0)* prefix to generate `'PREFIX'-NAME.xml` docbooks * `build_by_default`: causes, when set to true, to have this target be built by default, that is, when invoking plain `meson compile`, the default value is true for all built target types * `install_dir`: (*Added 0.46.0*) location to install the header or bundle depending on previous options * `install_header`: (*Added 0.46.0*) if true, install the header file Starting *0.46.0*, this function returns a list of at least two custom targets (in order): one for the source code and one for the header. The list will contain a third custom target for the generated docbook files if that keyword argument is passed. Earlier versions return a single custom target representing all the outputs. Generally, you should just add this list of targets to a top level target's source list. Example: ```meson gnome = import('gnome') # The returned source would be passed to another target gdbus_src = gnome.gdbus_codegen('example-interface', sources: 'com.example.Sample.xml', interface_prefix : 'com.example.', namespace : 'Sample', annotations : [ ['com.example.Hello()', 'org.freedesktop.DBus.Deprecated', 'true'] ], docbook : 'example-interface-doc' ) ``` ### gnome.generate_vapi() Creates a VAPI file from gir. The first argument is the name of the library. * `gir_dirs`: extra directories to include for gir files * `install`: if true, install the VAPI file * `install_dir`: location to install the VAPI file (defaults to datadir/vala/vapi) * `metadata_dirs`: extra directories to include for metadata files * `packages`: VAPI packages that are depended upon * `sources`: the gir source to generate the VAPI from * `vapi_dirs`: extra directories to include for VAPI files Returns a custom dependency that can be included when building other VAPI or Vala binaries. *Added 0.36.0* ### gnome.yelp() ```meson gnome.yelp(id: string, sources: ...string, sources: []string, media: []string, languages: []string, symlink_media: bool = true): void ``` Installs help documentation using Yelp. The first argument is the project id. Additionally, sources can be passed as additional positional arguments. This was, however, undocumented and never officially supported. Due to a longstanding bug, passing sources as a keyword argument will result in the positional argument sources to be ignored. *since 0.60.0* A warning is raised in this case. *Since 0.43.0* if "languages" is not specified, a [LINGUAS](https://www.gnu.org/software/gettext/manual/html_node/po_002fLINGUAS.html) file will be read instead. *Since 0.60.0* the use of the positional argument sources has been deprecated, and the "sources" keyword argument should be used instead. The passing of sources as positional arguments will be removed in the future. This also creates two targets for translations `help-$project-update-po` and `help-$project-pot`. * `languages`: *(deprecated since 0.43.0)* list of languages for translation, overrides the LINGUAS file * `media`: list of media such as images * `sources`: list of pages * `symlink_media`: if media should be symlinked not copied (defaults to `true` since 0.42.0) Note that very old versions of yelp may not support symlinked media; At least 3.10 should work. *Added 0.36.0* ### gnome.gtkdoc() Compiles and installs gtkdoc documentation into `prefix/share/gtk-doc/html`. Takes one positional argument: The name of the module. * `content_files`: a list of content files * `dependencies`: a list of dependencies * `fixxref_args`: a list of arguments to pass to `gtkdoc-fixxref` * `gobject_typesfile`: a list of type files * `include_directories`: extra include paths to pass to `gtkdoc-scangobj` * `ignore_headers`: a list of header files to ignore * `html_assets`: a list of assets for the HTML pages * `html_args` a list of arguments to pass to `gtkdoc-mkhtml` * `install`: if true, installs the generated docs * `install_dir`: the directory to install the generated docs relative to the gtk-doc html dir or an absolute path (default: module name) * `main_xml`: specifies the main XML file * `main_sgml`: equal to `main_xml` * `mkdb_args`: a list of arguments to pass to `gtkdoc-mkdb` * `namespace`: specifies the name space to pass to `gtkdoc-mkdb` * `module_version`: the version of the module, affects the installed location and the devhelp2 file location * `scan_args`: a list of arguments to pass to `gtkdoc-scan` * `scanobjs_args`: a list of arguments to pass to `gtkdoc-scangobj` * `c_args`: (*Added 0.48.0*) additional compile arguments to pass * `src_dir`: include_directories to include * `check`: (*Since 0.52.0*) if `true` runs `gtkdoc-check` when running unit tests. Note that this has the downside of rebuilding the doc for each build, which is often very slow. It usually should be enabled only in CI. This also creates a `$module-doc` target that can be run to build documentation. Normally the documentation is only built on install. *Since 0.52.0* Returns a target object that can be passed as dependency to other targets using generated doc files (e.g. in `content_files` of another doc). ### gnome.gtkdoc_html_dir() Takes as argument a module name and returns the path where that module's HTML files will be installed. Usually used with `install_data` to install extra files, such as images, to the output directory. ### gnome.post_install() *Since 0.57.0* Post-install update of various system wide caches. Each script will be executed only once even if `gnome.post_install()` is called multiple times from multiple subprojects. If `DESTDIR` is specified during installation all scripts will be skipped. It takes the following keyword arguments: - `glib_compile_schemas`: If set to `true`, update `gschemas.compiled` file in `//glib-2.0/schemas`. - `gio_querymodules`: List of directories relative to `prefix` where `giomodule.cache` file will be updated. - `gtk_update_icon_cache`: If set to `true`, update `icon-theme.cache` file in `//icons/hicolor`. - `update_desktop_database`: *Since 0.59.0* If set to `true`, update cache of MIME types handled by desktop files in `//applications`.