# Copyright 2013-2016 The Meson development team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys, struct import shutil, subprocess from ..mesonlib import OrderedSet SHT_STRTAB = 3 DT_NEEDED = 1 DT_RPATH = 15 DT_RUNPATH = 29 DT_STRTAB = 5 DT_SONAME = 14 DT_MIPS_RLD_MAP_REL = 1879048245 class DataSizes: def __init__(self, ptrsize, is_le): if is_le: p = '<' else: p = '>' self.Half = p + 'h' self.HalfSize = 2 self.Word = p + 'I' self.WordSize = 4 self.Sword = p + 'i' self.SwordSize = 4 if ptrsize == 64: self.Addr = p + 'Q' self.AddrSize = 8 self.Off = p + 'Q' self.OffSize = 8 self.XWord = p + 'Q' self.XWordSize = 8 self.Sxword = p + 'q' self.SxwordSize = 8 else: self.Addr = p + 'I' self.AddrSize = 4 self.Off = p + 'I' self.OffSize = 4 class DynamicEntry(DataSizes): def __init__(self, ifile, ptrsize, is_le): super().__init__(ptrsize, is_le) self.ptrsize = ptrsize if ptrsize == 64: self.d_tag = struct.unpack(self.Sxword, ifile.read(self.SxwordSize))[0] self.val = struct.unpack(self.XWord, ifile.read(self.XWordSize))[0] else: self.d_tag = struct.unpack(self.Sword, ifile.read(self.SwordSize))[0] self.val = struct.unpack(self.Word, ifile.read(self.WordSize))[0] def write(self, ofile): if self.ptrsize == 64: ofile.write(struct.pack(self.Sxword, self.d_tag)) ofile.write(struct.pack(self.XWord, self.val)) else: ofile.write(struct.pack(self.Sword, self.d_tag)) ofile.write(struct.pack(self.Word, self.val)) class SectionHeader(DataSizes): def __init__(self, ifile, ptrsize, is_le): super().__init__(ptrsize, is_le) if ptrsize == 64: is_64 = True else: is_64 = False # Elf64_Word self.sh_name = struct.unpack(self.Word, ifile.read(self.WordSize))[0] # Elf64_Word self.sh_type = struct.unpack(self.Word, ifile.read(self.WordSize))[0] # Elf64_Xword if is_64: self.sh_flags = struct.unpack(self.XWord, ifile.read(self.XWordSize))[0] else: self.sh_flags = struct.unpack(self.Word, ifile.read(self.WordSize))[0] # Elf64_Addr self.sh_addr = struct.unpack(self.Addr, ifile.read(self.AddrSize))[0] # Elf64_Off self.sh_offset = struct.unpack(self.Off, ifile.read(self.OffSize))[0] # Elf64_Xword if is_64: self.sh_size = struct.unpack(self.XWord, ifile.read(self.XWordSize))[0] else: self.sh_size = struct.unpack(self.Word, ifile.read(self.WordSize))[0] # Elf64_Word self.sh_link = struct.unpack(self.Word, ifile.read(self.WordSize))[0] # Elf64_Word self.sh_info = struct.unpack(self.Word, ifile.read(self.WordSize))[0] # Elf64_Xword if is_64: self.sh_addralign = struct.unpack(self.XWord, ifile.read(self.XWordSize))[0] else: self.sh_addralign = struct.unpack(self.Word, ifile.read(self.WordSize))[0] # Elf64_Xword if is_64: self.sh_entsize = struct.unpack(self.XWord, ifile.read(self.XWordSize))[0] else: self.sh_entsize = struct.unpack(self.Word, ifile.read(self.WordSize))[0] class Elf(DataSizes): def __init__(self, bfile, verbose=True): self.bfile = bfile self.verbose = verbose self.bf = open(bfile, 'r+b') try: (self.ptrsize, self.is_le) = self.detect_elf_type() super().__init__(self.ptrsize, self.is_le) self.parse_header() self.parse_sections() self.parse_dynamic() except (struct.error, RuntimeError): self.bf.close() raise def __enter__(self): return self def __del__(self): if self.bf: self.bf.close() def __exit__(self, exc_type, exc_value, traceback): self.bf.close() self.bf = None def detect_elf_type(self): data = self.bf.read(6) if data[1:4] != b'ELF': # This script gets called to non-elf targets too # so just ignore them. if self.verbose: print('File "%s" is not an ELF file.' % self.bfile) sys.exit(0) if data[4] == 1: ptrsize = 32 elif data[4] == 2: ptrsize = 64 else: sys.exit('File "%s" has unknown ELF class.' % self.bfile) if data[5] == 1: is_le = True elif data[5] == 2: is_le = False else: sys.exit('File "%s" has unknown ELF endianness.' % self.bfile) return ptrsize, is_le def parse_header(self): self.bf.seek(0) self.e_ident = struct.unpack('16s', self.bf.read(16))[0] self.e_type = struct.unpack(self.Half, self.bf.read(self.HalfSize))[0] self.e_machine = struct.unpack(self.Half, self.bf.read(self.HalfSize))[0] self.e_version = struct.unpack(self.Word, self.bf.read(self.WordSize))[0] self.e_entry = struct.unpack(self.Addr, self.bf.read(self.AddrSize))[0] self.e_phoff = struct.unpack(self.Off, self.bf.read(self.OffSize))[0] self.e_shoff = struct.unpack(self.Off, self.bf.read(self.OffSize))[0] self.e_flags = struct.unpack(self.Word, self.bf.read(self.WordSize))[0] self.e_ehsize = struct.unpack(self.Half, self.bf.read(self.HalfSize))[0] self.e_phentsize = struct.unpack(self.Half, self.bf.read(self.HalfSize))[0] self.e_phnum = struct.unpack(self.Half, self.bf.read(self.HalfSize))[0] self.e_shentsize = struct.unpack(self.Half, self.bf.read(self.HalfSize))[0] self.e_shnum = struct.unpack(self.Half, self.bf.read(self.HalfSize))[0] self.e_shstrndx = struct.unpack(self.Half, self.bf.read(self.HalfSize))[0] def parse_sections(self): self.bf.seek(self.e_shoff) self.sections = [] for _ in range(self.e_shnum): self.sections.append(SectionHeader(self.bf, self.ptrsize, self.is_le)) def read_str(self): arr = [] x = self.bf.read(1) while x != b'\0': arr.append(x) x = self.bf.read(1) if x == b'': raise RuntimeError('Tried to read past the end of the file') return b''.join(arr) def find_section(self, target_name): section_names = self.sections[self.e_shstrndx] for i in self.sections: self.bf.seek(section_names.sh_offset + i.sh_name) name = self.read_str() if name == target_name: return i def parse_dynamic(self): sec = self.find_section(b'.dynamic') self.dynamic = [] if sec is None: return self.bf.seek(sec.sh_offset) while True: e = DynamicEntry(self.bf, self.ptrsize, self.is_le) self.dynamic.append(e) if e.d_tag == 0: break def print_section_names(self): section_names = self.sections[self.e_shstrndx] for i in self.sections: self.bf.seek(section_names.sh_offset + i.sh_name) name = self.read_str() print(name.decode()) def print_soname(self): soname = None strtab = None for i in self.dynamic: if i.d_tag == DT_SONAME: soname = i if i.d_tag == DT_STRTAB: strtab = i if soname is None or strtab is None: print("This file does not have a soname") return self.bf.seek(strtab.val + soname.val) print(self.read_str()) def get_entry_offset(self, entrynum): sec = self.find_section(b'.dynstr') for i in self.dynamic: if i.d_tag == entrynum: return sec.sh_offset + i.val return None def print_rpath(self): offset = self.get_entry_offset(DT_RPATH) if offset is None: print("This file does not have an rpath.") else: self.bf.seek(offset) print(self.read_str()) def print_runpath(self): offset = self.get_entry_offset(DT_RUNPATH) if offset is None: print("This file does not have a runpath.") else: self.bf.seek(offset) print(self.read_str()) def print_deps(self): sec = self.find_section(b'.dynstr') deps = [] for i in self.dynamic: if i.d_tag == DT_NEEDED: deps.append(i) for i in deps: offset = sec.sh_offset + i.val self.bf.seek(offset) name = self.read_str() print(name) def fix_deps(self, prefix): sec = self.find_section(b'.dynstr') deps = [] for i in self.dynamic: if i.d_tag == DT_NEEDED: deps.append(i) for i in deps: offset = sec.sh_offset + i.val self.bf.seek(offset) name = self.read_str() if name.startswith(prefix): basename = name.split(b'/')[-1] padding = b'\0' * (len(name) - len(basename)) newname = basename + padding assert(len(newname) == len(name)) self.bf.seek(offset) self.bf.write(newname) def fix_rpath(self, new_rpath): # The path to search for can be either rpath or runpath. # Fix both of them to be sure. self.fix_rpathtype_entry(new_rpath, DT_RPATH) self.fix_rpathtype_entry(new_rpath, DT_RUNPATH) def fix_rpathtype_entry(self, new_rpath, entrynum): if isinstance(new_rpath, str): new_rpath = new_rpath.encode('utf8') rp_off = self.get_entry_offset(entrynum) if rp_off is None: if self.verbose: print('File does not have rpath. It should be a fully static executable.') return self.bf.seek(rp_off) old_rpath = self.read_str() if len(old_rpath) < len(new_rpath): sys.exit("New rpath must not be longer than the old one.") # The linker does read-only string deduplication. If there is a # string that shares a suffix with the rpath, they might get # dedupped. This means changing the rpath string might break something # completely unrelated. This has already happened once with X.org. # Thus we want to keep this change as small as possible to minimize # the chance of obliterating other strings. It might still happen # but our behavior is identical to what chrpath does and it has # been in use for ages so based on that this should be rare. if not new_rpath: self.remove_rpath_entry(entrynum) else: self.bf.seek(rp_off) self.bf.write(new_rpath) self.bf.write(b'\0') def remove_rpath_entry(self, entrynum): sec = self.find_section(b'.dynamic') if sec is None: return None for (i, entry) in enumerate(self.dynamic): if entry.d_tag == entrynum: rpentry = self.dynamic[i] rpentry.d_tag = 0 self.dynamic = self.dynamic[:i] + self.dynamic[i + 1:] + [rpentry] break # DT_MIPS_RLD_MAP_REL is relative to the offset of the tag. Adjust it consequently. for entry in self.dynamic[i:]: if entry.d_tag == DT_MIPS_RLD_MAP_REL: entry.val += 2 * (self.ptrsize // 8) break self.bf.seek(sec.sh_offset) for entry in self.dynamic: entry.write(self.bf) return None def fix_elf(fname, new_rpath, verbose=True): with Elf(fname, verbose) as e: if new_rpath is None: e.print_rpath() e.print_runpath() else: e.fix_rpath(new_rpath) def get_darwin_rpaths_to_remove(fname): out = subprocess.check_output(['otool', '-l', fname], universal_newlines=True, stderr=subprocess.DEVNULL) result = [] current_cmd = 'FOOBAR' for line in out.split('\n'): line = line.strip() if ' ' not in line: continue key, value = line.strip().split(' ', 1) if key == 'cmd': current_cmd = value if key == 'path' and current_cmd == 'LC_RPATH': rp = value.split('(', 1)[0].strip() result.append(rp) return result def fix_darwin(fname, new_rpath, final_path, install_name_mappings): try: rpaths = get_darwin_rpaths_to_remove(fname) except subprocess.CalledProcessError: # Otool failed, which happens when invoked on a # non-executable target. Just return. return try: args = [] if rpaths: # TODO: fix this properly, not totally clear how # # removing rpaths from binaries on macOS has tons of # weird edge cases. For instance, if the user provided # a '-Wl,-rpath' argument in LDFLAGS that happens to # coincide with an rpath generated from a dependency, # this would cause installation failures, as meson would # generate install_name_tool calls with two identical # '-delete_rpath' arguments, which install_name_tool # fails on. Because meson itself ensures that it never # adds duplicate rpaths, duplicate rpaths necessarily # come from user variables. The idea of using OrderedSet # is to remove *at most one* duplicate RPATH entry. This # is not optimal, as it only respects the user's choice # partially: if they provided a non-duplicate '-Wl,-rpath' # argument, it gets removed, if they provided a duplicate # one, it remains in the final binary. A potentially optimal # solution would split all user '-Wl,-rpath' arguments from # LDFLAGS, and later add them back with '-add_rpath'. for rp in OrderedSet(rpaths): args += ['-delete_rpath', rp] subprocess.check_call(['install_name_tool', fname] + args, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) args = [] if new_rpath: args += ['-add_rpath', new_rpath] # Rewrite -install_name @rpath/libfoo.dylib to /path/to/libfoo.dylib if fname.endswith('dylib'): args += ['-id', final_path] if install_name_mappings: for old, new in install_name_mappings.items(): args += ['-change', old, new] if args: subprocess.check_call(['install_name_tool', fname] + args, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) except Exception as err: raise SystemExit(err) def fix_jar(fname): subprocess.check_call(['jar', 'xfv', fname, 'META-INF/MANIFEST.MF']) with open('META-INF/MANIFEST.MF', 'r+') as f: lines = f.readlines() f.seek(0) for line in lines: if not line.startswith('Class-Path:'): f.write(line) f.truncate() subprocess.check_call(['jar', 'ufm', fname, 'META-INF/MANIFEST.MF']) def fix_rpath(fname, new_rpath, final_path, install_name_mappings, verbose=True): # Static libraries never have rpaths if fname.endswith('.a'): return # DLLs and EXE never have rpaths if fname.endswith('.dll') or fname.endswith('.exe'): return try: if fname.endswith('.jar'): fix_jar(fname) return fix_elf(fname, new_rpath, verbose) return except SystemExit as e: if isinstance(e.code, int) and e.code == 0: pass else: raise if shutil.which('install_name_tool'): fix_darwin(fname, new_rpath, final_path, install_name_mappings)