# SPDX-License-Identifier: Apache-2.0 # Copyright 2013-2021 The Meson development team from __future__ import annotations from .. import mparser from .exceptions import InvalidCode, InvalidArguments from .helpers import flatten, resolve_second_level_holders from .operator import MesonOperator from ..mesonlib import HoldableObject, MesonBugException import textwrap import typing as T from abc import ABCMeta from contextlib import AbstractContextManager if T.TYPE_CHECKING: from typing_extensions import Protocol # Object holders need the actual interpreter from ..interpreter import Interpreter __T = T.TypeVar('__T', bound='TYPE_var', contravariant=True) class OperatorCall(Protocol[__T]): def __call__(self, other: __T) -> 'TYPE_var': ... TV_func = T.TypeVar('TV_func', bound=T.Callable[..., T.Any]) TYPE_elementary = T.Union[str, int, bool, T.List[T.Any], T.Dict[str, T.Any]] TYPE_var = T.Union[TYPE_elementary, HoldableObject, 'MesonInterpreterObject'] TYPE_nvar = T.Union[TYPE_var, mparser.BaseNode] TYPE_kwargs = T.Dict[str, TYPE_var] TYPE_nkwargs = T.Dict[str, TYPE_nvar] TYPE_key_resolver = T.Callable[[mparser.BaseNode], str] SubProject = T.NewType('SubProject', str) class InterpreterObject: def __init__(self, *, subproject: T.Optional['SubProject'] = None) -> None: self.methods: T.Dict[ str, T.Callable[[T.List[TYPE_var], TYPE_kwargs], TYPE_var] ] = {} self.operators: T.Dict[MesonOperator, 'OperatorCall'] = {} self.trivial_operators: T.Dict[ MesonOperator, T.Tuple[ T.Union[T.Type, T.Tuple[T.Type, ...]], 'OperatorCall' ] ] = {} # Current node set during a method call. This can be used as location # when printing a warning message during a method call. self.current_node: mparser.BaseNode = None self.subproject = subproject or SubProject('') # Some default operators supported by all objects self.operators.update({ MesonOperator.EQUALS: self.op_equals, MesonOperator.NOT_EQUALS: self.op_not_equals, }) # The type of the object that can be printed to the user def display_name(self) -> str: return type(self).__name__ def method_call( self, method_name: str, args: T.List[TYPE_var], kwargs: TYPE_kwargs ) -> TYPE_var: if method_name in self.methods: method = self.methods[method_name] if not getattr(method, 'no-args-flattening', False): args = flatten(args) if not getattr(method, 'no-second-level-holder-flattening', False): args, kwargs = resolve_second_level_holders(args, kwargs) return method(args, kwargs) raise InvalidCode(f'Unknown method "{method_name}" in object {self} of type {type(self).__name__}.') def operator_call(self, operator: MesonOperator, other: TYPE_var) -> TYPE_var: if operator in self.trivial_operators: op = self.trivial_operators[operator] if op[0] is None and other is not None: raise MesonBugException(f'The unary operator `{operator.value}` of {self.display_name()} was passed the object {other} of type {type(other).__name__}') if op[0] is not None and not isinstance(other, op[0]): raise InvalidArguments(f'The `{operator.value}` operator of {self.display_name()} does not accept objects of type {type(other).__name__} ({other})') return op[1](other) if operator in self.operators: return self.operators[operator](other) raise InvalidCode(f'Object {self} of type {self.display_name()} does not support the `{operator.value}` operator.') # Default comparison operator support def _throw_comp_exception(self, other: TYPE_var, opt_type: str) -> T.NoReturn: raise InvalidArguments(textwrap.dedent( f''' Trying to compare values of different types ({self.display_name()}, {type(other).__name__}) using {opt_type}. This was deprecated and undefined behavior previously and is as of 0.60.0 a hard error. ''' )) def op_equals(self, other: TYPE_var) -> bool: # We use `type(...) == type(...)` here to enforce an *exact* match for comparison. We # don't want comparisons to be possible where `isinstance(derived_obj, type(base_obj))` # would pass because this comparison must never be true: `derived_obj == base_obj` if type(self) is not type(other): self._throw_comp_exception(other, '==') return self == other def op_not_equals(self, other: TYPE_var) -> bool: if type(self) is not type(other): self._throw_comp_exception(other, '!=') return self != other class MesonInterpreterObject(InterpreterObject): ''' All non-elementary objects and non-object-holders should be derived from this ''' class MutableInterpreterObject: ''' Dummy class to mark the object type as mutable ''' HoldableTypes = (HoldableObject, int, bool, str, list, dict) TYPE_HoldableTypes = T.Union[TYPE_elementary, HoldableObject] InterpreterObjectTypeVar = T.TypeVar('InterpreterObjectTypeVar', bound=TYPE_HoldableTypes) class ObjectHolder(InterpreterObject, T.Generic[InterpreterObjectTypeVar]): def __init__(self, obj: InterpreterObjectTypeVar, interpreter: 'Interpreter') -> None: super().__init__(subproject=interpreter.subproject) # This causes some type checkers to assume that obj is a base # HoldableObject, not the specialized type, so only do this assert in # non-type checking situations if not T.TYPE_CHECKING: assert isinstance(obj, HoldableTypes), f'This is a bug: Trying to hold object of type `{type(obj).__name__}` that is not in `{HoldableTypes}`' self.held_object = obj self.interpreter = interpreter self.env = self.interpreter.environment # Hide the object holder abstraction from the user def display_name(self) -> str: return type(self.held_object).__name__ # Override default comparison operators for the held object def op_equals(self, other: TYPE_var) -> bool: # See the comment from InterpreterObject why we are using `type()` here. if type(self.held_object) is not type(other): self._throw_comp_exception(other, '==') return self.held_object == other def op_not_equals(self, other: TYPE_var) -> bool: if type(self.held_object) is not type(other): self._throw_comp_exception(other, '!=') return self.held_object != other def __repr__(self) -> str: return f'<[{type(self).__name__}] holds [{type(self.held_object).__name__}]: {self.held_object!r}>' class IterableObject(metaclass=ABCMeta): '''Base class for all objects that can be iterated over in a foreach loop''' def iter_tuple_size(self) -> T.Optional[int]: '''Return the size of the tuple for each iteration. Returns None if only a single value is returned.''' raise MesonBugException(f'iter_tuple_size not implemented for {self.__class__.__name__}') def iter_self(self) -> T.Iterator[T.Union[TYPE_var, T.Tuple[TYPE_var, ...]]]: raise MesonBugException(f'iter not implemented for {self.__class__.__name__}') def size(self) -> int: raise MesonBugException(f'size not implemented for {self.__class__.__name__}') class ContextManagerObject(MesonInterpreterObject, AbstractContextManager): def __init__(self, subproject: 'SubProject') -> None: super().__init__(subproject=subproject)