# Copyright 2016-2017 The Meson development team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This class contains the basic functionality needed to run any interpreter # or an interpreter-based tool. from . import mparser, mesonlib, mlog from . import environment, dependencies import os, copy, re, types from functools import wraps # Decorators for method calls. def check_stringlist(a, msg='Arguments must be strings.'): if not isinstance(a, list): mlog.debug('Not a list:', str(a)) raise InvalidArguments('Argument not a list.') if not all(isinstance(s, str) for s in a): mlog.debug('Element not a string:', str(a)) raise InvalidArguments(msg) def _get_callee_args(wrapped_args, want_subproject=False): s = wrapped_args[0] n = len(wrapped_args) # Raise an error if the codepaths are not there subproject = None if want_subproject and n == 2: if hasattr(s, 'subproject'): # Interpreter base types have 2 args: self, node node_or_state = wrapped_args[1] # args and kwargs are inside the node args = None kwargs = None subproject = s.subproject elif hasattr(wrapped_args[1], 'subproject'): # Module objects have 2 args: self, interpreter node_or_state = wrapped_args[1] # args and kwargs are inside the node args = None kwargs = None subproject = wrapped_args[1].subproject else: raise AssertionError('Unknown args: {!r}'.format(wrapped_args)) elif n == 3: # Methods on objects (*Holder, MesonMain, etc) have 3 args: self, args, kwargs node_or_state = None # FIXME args = wrapped_args[1] kwargs = wrapped_args[2] if want_subproject: if hasattr(s, 'subproject'): subproject = s.subproject elif hasattr(s, 'interpreter'): subproject = s.interpreter.subproject elif n == 4: # Meson functions have 4 args: self, node, args, kwargs # Module functions have 4 args: self, state, args, kwargs; except, # PythonInstallation methods have self, interpreter, args, kwargs node_or_state = wrapped_args[1] args = wrapped_args[2] kwargs = wrapped_args[3] if want_subproject: if isinstance(s, InterpreterBase): subproject = s.subproject else: subproject = node_or_state.subproject elif n == 5: # Module snippets have 5 args: self, interpreter, state, args, kwargs node_or_state = wrapped_args[2] args = wrapped_args[3] kwargs = wrapped_args[4] if want_subproject: subproject = node_or_state.subproject else: raise AssertionError('Unknown args: {!r}'.format(wrapped_args)) # Sometimes interpreter methods are called internally with None instead of # empty list/dict args = args if args is not None else [] kwargs = kwargs if kwargs is not None else {} return s, node_or_state, args, kwargs, subproject def flatten(args): if isinstance(args, mparser.StringNode): return args.value if isinstance(args, (int, str, mesonlib.File, InterpreterObject)): return args result = [] for a in args: if isinstance(a, list): rest = flatten(a) result = result + rest elif isinstance(a, mparser.StringNode): result.append(a.value) else: result.append(a) return result def noPosargs(f): @wraps(f) def wrapped(*wrapped_args, **wrapped_kwargs): args = _get_callee_args(wrapped_args)[2] if args: raise InvalidArguments('Function does not take positional arguments.') return f(*wrapped_args, **wrapped_kwargs) return wrapped def noKwargs(f): @wraps(f) def wrapped(*wrapped_args, **wrapped_kwargs): kwargs = _get_callee_args(wrapped_args)[3] if kwargs: raise InvalidArguments('Function does not take keyword arguments.') return f(*wrapped_args, **wrapped_kwargs) return wrapped def stringArgs(f): @wraps(f) def wrapped(*wrapped_args, **wrapped_kwargs): args = _get_callee_args(wrapped_args)[2] assert(isinstance(args, list)) check_stringlist(args) return f(*wrapped_args, **wrapped_kwargs) return wrapped def noArgsFlattening(f): setattr(f, 'no-args-flattening', True) return f class permittedKwargs: def __init__(self, permitted): self.permitted = permitted def __call__(self, f): @wraps(f) def wrapped(*wrapped_args, **wrapped_kwargs): s, node_or_state, args, kwargs, _ = _get_callee_args(wrapped_args) loc = types.SimpleNamespace() if hasattr(s, 'subdir'): loc.subdir = s.subdir loc.lineno = s.current_lineno elif node_or_state and hasattr(node_or_state, 'subdir'): loc.subdir = node_or_state.subdir loc.lineno = node_or_state.current_lineno else: loc = None for k in kwargs: if k not in self.permitted: mlog.warning('''Passed invalid keyword argument "{}".'''.format(k), location=loc) mlog.warning('This will become a hard error in the future.') return f(*wrapped_args, **wrapped_kwargs) return wrapped class FeatureCheckBase: "Base class for feature version checks" def __init__(self, feature_name, version): self.feature_name = feature_name self.feature_version = version @staticmethod def get_target_version(subproject): # Don't do any checks if project() has not been parsed yet if subproject not in mesonlib.project_meson_versions: return '' return mesonlib.project_meson_versions[subproject] def use(self, subproject): tv = self.get_target_version(subproject) # No target version if tv == '': return # Target version is new enough if mesonlib.version_compare_condition_with_min(tv, self.feature_version): return # Feature is too new for target version, register it if subproject not in self.feature_registry: self.feature_registry[subproject] = {self.feature_version: set()} register = self.feature_registry[subproject] if self.feature_version not in register: register[self.feature_version] = set() if self.feature_name in register[self.feature_version]: # Don't warn about the same feature multiple times # FIXME: This is needed to prevent duplicate warnings, but also # means we won't warn about a feature used in multiple places. return register[self.feature_version].add(self.feature_name) self.log_usage_warning(tv) @classmethod def report(cls, subproject): if subproject not in cls.feature_registry: return warning_str = cls.get_warning_str_prefix(cls.get_target_version(subproject)) fv = cls.feature_registry[subproject] for version in sorted(fv.keys()): warning_str += '\n * {}: {}'.format(version, fv[version]) mlog.warning(warning_str) def __call__(self, f): @wraps(f) def wrapped(*wrapped_args, **wrapped_kwargs): subproject = _get_callee_args(wrapped_args, want_subproject=True)[4] if subproject is None: raise AssertionError('{!r}'.format(wrapped_args)) self.use(subproject) return f(*wrapped_args, **wrapped_kwargs) return wrapped class FeatureNew(FeatureCheckBase): """Checks for new features""" # Class variable, shared across all instances # # Format: {subproject: {feature_version: set(feature_names)}} feature_registry = {} @staticmethod def get_warning_str_prefix(tv): return 'Project specifies a minimum meson_version \'{}\' but uses features which were added in newer versions:'.format(tv) def log_usage_warning(self, tv): mlog.warning('Project targetting \'{}\' but tried to use feature introduced ' 'in \'{}\': {}'.format(tv, self.feature_version, self.feature_name)) class FeatureDeprecated(FeatureCheckBase): """Checks for deprecated features""" # Class variable, shared across all instances # # Format: {subproject: {feature_version: set(feature_names)}} feature_registry = {} @staticmethod def get_warning_str_prefix(tv): return 'Deprecated features used:' def log_usage_warning(self, tv): mlog.deprecation('Project targetting \'{}\' but tried to use feature ' 'deprecated since \'{}\': {}' ''.format(tv, self.feature_version, self.feature_name)) class FeatureCheckKwargsBase: def __init__(self, feature_name, feature_version, kwargs): self.feature_name = feature_name self.feature_version = feature_version self.kwargs = kwargs def __call__(self, f): @wraps(f) def wrapped(*wrapped_args, **wrapped_kwargs): # Which FeatureCheck class to invoke FeatureCheckClass = self.feature_check_class kwargs, subproject = _get_callee_args(wrapped_args, want_subproject=True)[3:5] if subproject is None: raise AssertionError('{!r}'.format(wrapped_args)) for arg in self.kwargs: if arg not in kwargs: continue name = arg + ' arg in ' + self.feature_name FeatureCheckClass(name, self.feature_version).use(subproject) return f(*wrapped_args, **wrapped_kwargs) return wrapped class FeatureNewKwargs(FeatureCheckKwargsBase): feature_check_class = FeatureNew class FeatureDeprecatedKwargs(FeatureCheckKwargsBase): feature_check_class = FeatureDeprecated class InterpreterException(mesonlib.MesonException): pass class InvalidCode(InterpreterException): pass class InvalidArguments(InterpreterException): pass class SubdirDoneRequest(BaseException): pass class InterpreterObject: def __init__(self): self.methods = {} def method_call(self, method_name, args, kwargs): if method_name in self.methods: method = self.methods[method_name] if not getattr(method, 'no-args-flattening', False): args = flatten(args) return method(args, kwargs) raise InvalidCode('Unknown method "%s" in object.' % method_name) class MutableInterpreterObject(InterpreterObject): def __init__(self): super().__init__() class Disabler(InterpreterObject): def __init__(self): super().__init__() self.methods.update({'found': self.found_method}) def found_method(self, args, kwargs): return False def is_disabler(i): return isinstance(i, Disabler) def is_disabled(args, kwargs): for i in args: if isinstance(i, Disabler): return True for i in kwargs.values(): if isinstance(i, Disabler): return True if isinstance(i, list): for j in i: if isinstance(j, Disabler): return True return False class InterpreterBase: def __init__(self, source_root, subdir): self.source_root = source_root self.funcs = {} self.builtin = {} self.subdir = subdir self.variables = {} self.argument_depth = 0 self.current_lineno = -1 def load_root_meson_file(self): mesonfile = os.path.join(self.source_root, self.subdir, environment.build_filename) if not os.path.isfile(mesonfile): raise InvalidArguments('Missing Meson file in %s' % mesonfile) with open(mesonfile, encoding='utf8') as mf: code = mf.read() if code.isspace(): raise InvalidCode('Builder file is empty.') assert(isinstance(code, str)) try: self.ast = mparser.Parser(code, self.subdir).parse() except mesonlib.MesonException as me: me.file = environment.build_filename raise me def parse_project(self): """ Parses project() and initializes languages, compilers etc. Do this early because we need this before we parse the rest of the AST. """ self.evaluate_codeblock(self.ast, end=1) def sanity_check_ast(self): if not isinstance(self.ast, mparser.CodeBlockNode): raise InvalidCode('AST is of invalid type. Possibly a bug in the parser.') if not self.ast.lines: raise InvalidCode('No statements in code.') first = self.ast.lines[0] if not isinstance(first, mparser.FunctionNode) or first.func_name != 'project': raise InvalidCode('First statement must be a call to project') def run(self): # Evaluate everything after the first line, which is project() because # we already parsed that in self.parse_project() try: self.evaluate_codeblock(self.ast, start=1) except SubdirDoneRequest: pass def evaluate_codeblock(self, node, start=0, end=None): if node is None: return if not isinstance(node, mparser.CodeBlockNode): e = InvalidCode('Tried to execute a non-codeblock. Possibly a bug in the parser.') e.lineno = node.lineno e.colno = node.colno raise e statements = node.lines[start:end] i = 0 while i < len(statements): cur = statements[i] try: self.current_lineno = cur.lineno self.evaluate_statement(cur) except Exception as e: if not hasattr(e, 'lineno'): e.lineno = cur.lineno e.colno = cur.colno e.file = os.path.join(self.subdir, 'meson.build') raise e i += 1 # In THE FUTURE jump over blocks and stuff. def evaluate_statement(self, cur): if isinstance(cur, mparser.FunctionNode): return self.function_call(cur) elif isinstance(cur, mparser.AssignmentNode): return self.assignment(cur) elif isinstance(cur, mparser.MethodNode): return self.method_call(cur) elif isinstance(cur, mparser.StringNode): return cur.value elif isinstance(cur, mparser.BooleanNode): return cur.value elif isinstance(cur, mparser.IfClauseNode): return self.evaluate_if(cur) elif isinstance(cur, mparser.IdNode): return self.get_variable(cur.value) elif isinstance(cur, mparser.ComparisonNode): return self.evaluate_comparison(cur) elif isinstance(cur, mparser.ArrayNode): return self.evaluate_arraystatement(cur) elif isinstance(cur, mparser.DictNode): return self.evaluate_dictstatement(cur) elif isinstance(cur, mparser.NumberNode): return cur.value elif isinstance(cur, mparser.AndNode): return self.evaluate_andstatement(cur) elif isinstance(cur, mparser.OrNode): return self.evaluate_orstatement(cur) elif isinstance(cur, mparser.NotNode): return self.evaluate_notstatement(cur) elif isinstance(cur, mparser.UMinusNode): return self.evaluate_uminusstatement(cur) elif isinstance(cur, mparser.ArithmeticNode): return self.evaluate_arithmeticstatement(cur) elif isinstance(cur, mparser.ForeachClauseNode): return self.evaluate_foreach(cur) elif isinstance(cur, mparser.PlusAssignmentNode): return self.evaluate_plusassign(cur) elif isinstance(cur, mparser.IndexNode): return self.evaluate_indexing(cur) elif isinstance(cur, mparser.TernaryNode): return self.evaluate_ternary(cur) elif self.is_elementary_type(cur): return cur else: raise InvalidCode("Unknown statement.") def evaluate_arraystatement(self, cur): (arguments, kwargs) = self.reduce_arguments(cur.args) if len(kwargs) > 0: raise InvalidCode('Keyword arguments are invalid in array construction.') return arguments @FeatureNew('dict', '0.47.0') def evaluate_dictstatement(self, cur): (arguments, kwargs) = self.reduce_arguments(cur.args) assert (not arguments) return kwargs def evaluate_notstatement(self, cur): v = self.evaluate_statement(cur.value) if not isinstance(v, bool): raise InterpreterException('Argument to "not" is not a boolean.') return not v def evaluate_if(self, node): assert(isinstance(node, mparser.IfClauseNode)) for i in node.ifs: result = self.evaluate_statement(i.condition) if is_disabler(result): return result if not(isinstance(result, bool)): raise InvalidCode('If clause {!r} does not evaluate to true or false.'.format(result)) if result: self.evaluate_codeblock(i.block) return if not isinstance(node.elseblock, mparser.EmptyNode): self.evaluate_codeblock(node.elseblock) def validate_comparison_types(self, val1, val2): if type(val1) != type(val2): return False return True def evaluate_comparison(self, node): val1 = self.evaluate_statement(node.left) if is_disabler(val1): return val1 val2 = self.evaluate_statement(node.right) if is_disabler(val2): return val2 valid = self.validate_comparison_types(val1, val2) # Ordering comparisons of different types isn't allowed since PR #1810 # (0.41.0). Since PR #2884 we also warn about equality comparisons of # different types, which will one day become an error. if not valid and (node.ctype == '==' or node.ctype == '!='): mlog.warning('''Trying to compare values of different types ({}, {}) using {}. The result of this is undefined and will become a hard error in a future Meson release.''' .format(type(val1).__name__, type(val2).__name__, node.ctype), location=node) if node.ctype == '==': return val1 == val2 elif node.ctype == '!=': return val1 != val2 elif not valid: raise InterpreterException( 'Values of different types ({}, {}) cannot be compared using {}.'.format(type(val1).__name__, type(val2).__name__, node.ctype)) elif not self.is_elementary_type(val1): raise InterpreterException('{} can only be compared for equality.'.format(node.left.value)) elif not self.is_elementary_type(val2): raise InterpreterException('{} can only be compared for equality.'.format(node.right.value)) elif node.ctype == '<': return val1 < val2 elif node.ctype == '<=': return val1 <= val2 elif node.ctype == '>': return val1 > val2 elif node.ctype == '>=': return val1 >= val2 else: raise InvalidCode('You broke my compare eval.') def evaluate_andstatement(self, cur): l = self.evaluate_statement(cur.left) if is_disabler(l): return l if not isinstance(l, bool): raise InterpreterException('First argument to "and" is not a boolean.') if not l: return False r = self.evaluate_statement(cur.right) if is_disabler(r): return r if not isinstance(r, bool): raise InterpreterException('Second argument to "and" is not a boolean.') return r def evaluate_orstatement(self, cur): l = self.evaluate_statement(cur.left) if is_disabler(l): return l if not isinstance(l, bool): raise InterpreterException('First argument to "or" is not a boolean.') if l: return True r = self.evaluate_statement(cur.right) if is_disabler(r): return r if not isinstance(r, bool): raise InterpreterException('Second argument to "or" is not a boolean.') return r def evaluate_uminusstatement(self, cur): v = self.evaluate_statement(cur.value) if is_disabler(v): return v if not isinstance(v, int): raise InterpreterException('Argument to negation is not an integer.') return -v def evaluate_arithmeticstatement(self, cur): l = self.evaluate_statement(cur.left) if is_disabler(l): return l r = self.evaluate_statement(cur.right) if is_disabler(r): return r if cur.operation == 'add': if isinstance(l, dict) and isinstance(r, dict): return {**l, **r} try: return l + r except Exception as e: raise InvalidCode('Invalid use of addition: ' + str(e)) elif cur.operation == 'sub': if not isinstance(l, int) or not isinstance(r, int): raise InvalidCode('Subtraction works only with integers.') return l - r elif cur.operation == 'mul': if not isinstance(l, int) or not isinstance(r, int): raise InvalidCode('Multiplication works only with integers.') return l * r elif cur.operation == 'div': if not isinstance(l, int) or not isinstance(r, int): raise InvalidCode('Division works only with integers.') return l // r elif cur.operation == 'mod': if not isinstance(l, int) or not isinstance(r, int): raise InvalidCode('Modulo works only with integers.') return l % r else: raise InvalidCode('You broke me.') def evaluate_ternary(self, node): assert(isinstance(node, mparser.TernaryNode)) result = self.evaluate_statement(node.condition) if is_disabler(result): return result if not isinstance(result, bool): raise InterpreterException('Ternary condition is not boolean.') if result: return self.evaluate_statement(node.trueblock) else: return self.evaluate_statement(node.falseblock) def evaluate_foreach(self, node): assert(isinstance(node, mparser.ForeachClauseNode)) items = self.evaluate_statement(node.items) if isinstance(items, list): if len(node.varnames) != 1: raise InvalidArguments('Foreach on array does not unpack') varname = node.varnames[0].value if is_disabler(items): return items for item in items: self.set_variable(varname, item) self.evaluate_codeblock(node.block) elif isinstance(items, dict): if len(node.varnames) != 2: raise InvalidArguments('Foreach on dict unpacks key and value') if is_disabler(items): return items for key, value in items.items(): self.set_variable(node.varnames[0].value, key) self.set_variable(node.varnames[1].value, value) self.evaluate_codeblock(node.block) else: raise InvalidArguments('Items of foreach loop must be an array or a dict') def evaluate_plusassign(self, node): assert(isinstance(node, mparser.PlusAssignmentNode)) varname = node.var_name addition = self.evaluate_statement(node.value) if is_disabler(addition): self.set_variable(varname, addition) return # Remember that all variables are immutable. We must always create a # full new variable and then assign it. old_variable = self.get_variable(varname) if isinstance(old_variable, str): if not isinstance(addition, str): raise InvalidArguments('The += operator requires a string on the right hand side if the variable on the left is a string') new_value = old_variable + addition elif isinstance(old_variable, int): if not isinstance(addition, int): raise InvalidArguments('The += operator requires an int on the right hand side if the variable on the left is an int') new_value = old_variable + addition elif isinstance(old_variable, list): if isinstance(addition, list): new_value = old_variable + addition else: new_value = old_variable + [addition] elif isinstance(old_variable, dict): if not isinstance(addition, dict): raise InvalidArguments('The += operator requires a dict on the right hand side if the variable on the left is a dict') new_value = {**old_variable, **addition} # Add other data types here. else: raise InvalidArguments('The += operator currently only works with arrays, dicts, strings or ints ') self.set_variable(varname, new_value) def evaluate_indexing(self, node): assert(isinstance(node, mparser.IndexNode)) iobject = self.evaluate_statement(node.iobject) if is_disabler(iobject): return iobject if not hasattr(iobject, '__getitem__'): raise InterpreterException( 'Tried to index an object that doesn\'t support indexing.') index = self.evaluate_statement(node.index) if isinstance(iobject, dict): if not isinstance(index, str): raise InterpreterException('Key is not a string') try: return iobject[index] except KeyError: raise InterpreterException('Key %s is not in dict' % index) else: if not isinstance(index, int): raise InterpreterException('Index value is not an integer.') try: return iobject[index] except IndexError: raise InterpreterException('Index %d out of bounds of array of size %d.' % (index, len(iobject))) def function_call(self, node): func_name = node.func_name (posargs, kwargs) = self.reduce_arguments(node.args) if is_disabled(posargs, kwargs): return Disabler() if func_name in self.funcs: func = self.funcs[func_name] if not getattr(func, 'no-args-flattening', False): posargs = flatten(posargs) return func(node, posargs, kwargs) else: self.unknown_function_called(func_name) def method_call(self, node): invokable = node.source_object if isinstance(invokable, mparser.IdNode): object_name = invokable.value obj = self.get_variable(object_name) else: obj = self.evaluate_statement(invokable) method_name = node.name args = node.args if isinstance(obj, str): return self.string_method_call(obj, method_name, args) if isinstance(obj, bool): return self.bool_method_call(obj, method_name, args) if isinstance(obj, int): return self.int_method_call(obj, method_name, args) if isinstance(obj, list): return self.array_method_call(obj, method_name, args) if isinstance(obj, dict): return self.dict_method_call(obj, method_name, args) if isinstance(obj, mesonlib.File): raise InvalidArguments('File object "%s" is not callable.' % obj) if not isinstance(obj, InterpreterObject): raise InvalidArguments('Variable "%s" is not callable.' % object_name) (args, kwargs) = self.reduce_arguments(args) # Special case. This is the only thing you can do with a disabler # object. Every other use immediately returns the disabler object. if isinstance(obj, Disabler) and method_name == 'found': return False if is_disabled(args, kwargs): return Disabler() if method_name == 'extract_objects': self.validate_extraction(obj.held_object) return obj.method_call(method_name, args, kwargs) def bool_method_call(self, obj, method_name, args): (posargs, kwargs) = self.reduce_arguments(args) if is_disabled(posargs, kwargs): return Disabler() if method_name == 'to_string': if not posargs: if obj: return 'true' else: return 'false' elif len(posargs) == 2 and isinstance(posargs[0], str) and isinstance(posargs[1], str): if obj: return posargs[0] else: return posargs[1] else: raise InterpreterException('bool.to_string() must have either no arguments or exactly two string arguments that signify what values to return for true and false.') elif method_name == 'to_int': if obj: return 1 else: return 0 else: raise InterpreterException('Unknown method "%s" for a boolean.' % method_name) def int_method_call(self, obj, method_name, args): (posargs, kwargs) = self.reduce_arguments(args) if is_disabled(posargs, kwargs): return Disabler() if method_name == 'is_even': if not posargs: return obj % 2 == 0 else: raise InterpreterException('int.is_even() must have no arguments.') elif method_name == 'is_odd': if not posargs: return obj % 2 != 0 else: raise InterpreterException('int.is_odd() must have no arguments.') elif method_name == 'to_string': if not posargs: return str(obj) else: raise InterpreterException('int.to_string() must have no arguments.') else: raise InterpreterException('Unknown method "%s" for an integer.' % method_name) @staticmethod def _get_one_string_posarg(posargs, method_name): if len(posargs) > 1: m = '{}() must have zero or one arguments' raise InterpreterException(m.format(method_name)) elif len(posargs) == 1: s = posargs[0] if not isinstance(s, str): m = '{}() argument must be a string' raise InterpreterException(m.format(method_name)) return s return None def string_method_call(self, obj, method_name, args): (posargs, kwargs) = self.reduce_arguments(args) if is_disabled(posargs, kwargs): return Disabler() if method_name == 'strip': s = self._get_one_string_posarg(posargs, 'strip') if s is not None: return obj.strip(s) return obj.strip() elif method_name == 'format': return self.format_string(obj, args) elif method_name == 'to_upper': return obj.upper() elif method_name == 'to_lower': return obj.lower() elif method_name == 'underscorify': return re.sub(r'[^a-zA-Z0-9]', '_', obj) elif method_name == 'split': s = self._get_one_string_posarg(posargs, 'split') if s is not None: return obj.split(s) return obj.split() elif method_name == 'startswith' or method_name == 'contains' or method_name == 'endswith': s = posargs[0] if not isinstance(s, str): raise InterpreterException('Argument must be a string.') if method_name == 'startswith': return obj.startswith(s) elif method_name == 'contains': return obj.find(s) >= 0 return obj.endswith(s) elif method_name == 'to_int': try: return int(obj) except Exception: raise InterpreterException('String {!r} cannot be converted to int'.format(obj)) elif method_name == 'join': if len(posargs) != 1: raise InterpreterException('Join() takes exactly one argument.') strlist = posargs[0] check_stringlist(strlist) return obj.join(strlist) elif method_name == 'version_compare': if len(posargs) != 1: raise InterpreterException('Version_compare() takes exactly one argument.') cmpr = posargs[0] if not isinstance(cmpr, str): raise InterpreterException('Version_compare() argument must be a string.') return mesonlib.version_compare(obj, cmpr) raise InterpreterException('Unknown method "%s" for a string.' % method_name) def unknown_function_called(self, func_name): raise InvalidCode('Unknown function "%s".' % func_name) def array_method_call(self, obj, method_name, args): (posargs, kwargs) = self.reduce_arguments(args) if is_disabled(posargs, kwargs): return Disabler() if method_name == 'contains': return self.check_contains(obj, posargs) elif method_name == 'length': return len(obj) elif method_name == 'get': index = posargs[0] fallback = None if len(posargs) == 2: fallback = posargs[1] elif len(posargs) > 2: m = 'Array method \'get()\' only takes two arguments: the ' \ 'index and an optional fallback value if the index is ' \ 'out of range.' raise InvalidArguments(m) if not isinstance(index, int): raise InvalidArguments('Array index must be a number.') if index < -len(obj) or index >= len(obj): if fallback is None: m = 'Array index {!r} is out of bounds for array of size {!r}.' raise InvalidArguments(m.format(index, len(obj))) return fallback return obj[index] m = 'Arrays do not have a method called {!r}.' raise InterpreterException(m.format(method_name)) def dict_method_call(self, obj, method_name, args): (posargs, kwargs) = self.reduce_arguments(args) if is_disabled(posargs, kwargs): return Disabler() if method_name in ('has_key', 'get'): if method_name == 'has_key': if len(posargs) != 1: raise InterpreterException('has_key() takes exactly one argument.') else: if len(posargs) not in (1, 2): raise InterpreterException('get() takes one or two arguments.') key = posargs[0] if not isinstance(key, (str)): raise InvalidArguments('Dictionary key must be a string.') has_key = key in obj if method_name == 'has_key': return has_key if has_key: return obj[key] if len(posargs) == 2: return posargs[1] raise InterpreterException('Key {!r} is not in the dictionary.'.format(key)) if method_name == 'keys': if len(posargs) != 0: raise InterpreterException('keys() takes no arguments.') return list(obj.keys()) raise InterpreterException('Dictionaries do not have a method called "%s".' % method_name) def reduce_arguments(self, args): assert(isinstance(args, mparser.ArgumentNode)) if args.incorrect_order(): raise InvalidArguments('All keyword arguments must be after positional arguments.') self.argument_depth += 1 reduced_pos = [self.evaluate_statement(arg) for arg in args.arguments] reduced_kw = {} for key in args.kwargs.keys(): if not isinstance(key, str): raise InvalidArguments('Keyword argument name is not a string.') a = args.kwargs[key] reduced_kw[key] = self.evaluate_statement(a) self.argument_depth -= 1 return reduced_pos, reduced_kw def assignment(self, node): assert(isinstance(node, mparser.AssignmentNode)) if self.argument_depth != 0: raise InvalidArguments('''Tried to assign values inside an argument list. To specify a keyword argument, use : instead of =.''') var_name = node.var_name if not isinstance(var_name, str): raise InvalidArguments('Tried to assign value to a non-variable.') value = self.evaluate_statement(node.value) if not self.is_assignable(value): raise InvalidCode('Tried to assign an invalid value to variable.') # For mutable objects we need to make a copy on assignment if isinstance(value, MutableInterpreterObject): value = copy.deepcopy(value) self.set_variable(var_name, value) return None def set_variable(self, varname, variable): if variable is None: raise InvalidCode('Can not assign None to variable.') if not isinstance(varname, str): raise InvalidCode('First argument to set_variable must be a string.') if not self.is_assignable(variable): raise InvalidCode('Assigned value not of assignable type.') if re.match('[_a-zA-Z][_0-9a-zA-Z]*$', varname) is None: raise InvalidCode('Invalid variable name: ' + varname) if varname in self.builtin: raise InvalidCode('Tried to overwrite internal variable "%s"' % varname) self.variables[varname] = variable def get_variable(self, varname): if varname in self.builtin: return self.builtin[varname] if varname in self.variables: return self.variables[varname] raise InvalidCode('Unknown variable "%s".' % varname) def is_assignable(self, value): return isinstance(value, (InterpreterObject, dependencies.Dependency, str, int, list, dict, mesonlib.File)) def is_elementary_type(self, v): return isinstance(v, (int, float, str, bool, list))