# Copyright 2016-2017 The Meson development team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This class contains the basic functionality needed to run any interpreter # or an interpreter-based tool. from . import mparser, mesonlib, mlog from . import environment, dependencies import abc import os, copy, re import collections.abc from functools import wraps import typing as T class InterpreterObject: def __init__(self): self.methods = {} # type: T.Dict[str, T.Callable] # Current node set during a method call. This can be used as location # when printing a warning message during a method call. self.current_node = None # type: mparser.BaseNode def method_call(self, method_name: str, args: T.List[T.Union[mparser.BaseNode, str, int, float, bool, list, dict, 'InterpreterObject', 'ObjectHolder']], kwargs: T.Dict[str, T.Union[mparser.BaseNode, str, int, float, bool, list, dict, 'InterpreterObject', 'ObjectHolder']]): if method_name in self.methods: method = self.methods[method_name] if not getattr(method, 'no-args-flattening', False): args = flatten(args) return method(args, kwargs) raise InvalidCode('Unknown method "%s" in object.' % method_name) TV_InterpreterObject = T.TypeVar('TV_InterpreterObject') class ObjectHolder(T.Generic[TV_InterpreterObject]): def __init__(self, obj: InterpreterObject, subproject: T.Optional[str] = None): self.held_object = obj # type: InterpreterObject self.subproject = subproject # type: str def __repr__(self): return ''.format(self.held_object) TYPE_elementary = T.Union[str, int, float, bool] TYPE_var = T.Union[TYPE_elementary, list, dict, InterpreterObject, ObjectHolder] TYPE_nvar = T.Union[TYPE_var, mparser.BaseNode] TYPE_nkwargs = T.Dict[T.Union[mparser.BaseNode, str], TYPE_nvar] # Decorators for method calls. def check_stringlist(a: T.Any, msg: str = 'Arguments must be strings.') -> None: if not isinstance(a, list): mlog.debug('Not a list:', str(a)) raise InvalidArguments('Argument not a list.') if not all(isinstance(s, str) for s in a): mlog.debug('Element not a string:', str(a)) raise InvalidArguments(msg) def _get_callee_args(wrapped_args, want_subproject: bool = False): s = wrapped_args[0] n = len(wrapped_args) # Raise an error if the codepaths are not there subproject = None if want_subproject and n == 2: if hasattr(s, 'subproject'): # Interpreter base types have 2 args: self, node node = wrapped_args[1] # args and kwargs are inside the node args = None kwargs = None subproject = s.subproject elif hasattr(wrapped_args[1], 'subproject'): # Module objects have 2 args: self, interpreter node = wrapped_args[1].current_node # args and kwargs are inside the node args = None kwargs = None subproject = wrapped_args[1].subproject else: raise AssertionError('Unknown args: {!r}'.format(wrapped_args)) elif n == 3: # Methods on objects (*Holder, MesonMain, etc) have 3 args: self, args, kwargs node = s.current_node args = wrapped_args[1] kwargs = wrapped_args[2] if want_subproject: if hasattr(s, 'subproject'): subproject = s.subproject elif hasattr(s, 'interpreter'): subproject = s.interpreter.subproject elif n == 4: # Meson functions have 4 args: self, node, args, kwargs # Module functions have 4 args: self, state, args, kwargs if isinstance(s, InterpreterBase): node = wrapped_args[1] else: node = wrapped_args[1].current_node args = wrapped_args[2] kwargs = wrapped_args[3] if want_subproject: if isinstance(s, InterpreterBase): subproject = s.subproject else: subproject = wrapped_args[1].subproject elif n == 5: # Module snippets have 5 args: self, interpreter, state, args, kwargs node = wrapped_args[2].current_node args = wrapped_args[3] kwargs = wrapped_args[4] if want_subproject: subproject = wrapped_args[2].subproject else: raise AssertionError('Unknown args: {!r}'.format(wrapped_args)) # Sometimes interpreter methods are called internally with None instead of # empty list/dict args = args if args is not None else [] kwargs = kwargs if kwargs is not None else {} return s, node, args, kwargs, subproject def flatten(args: T.Union[TYPE_nvar, T.List[TYPE_nvar]]) -> T.List[TYPE_nvar]: if isinstance(args, mparser.StringNode): assert isinstance(args.value, str) return [args.value] if not isinstance(args, collections.abc.Sequence): return [args] result = [] # type: T.List[TYPE_nvar] for a in args: if isinstance(a, list): rest = flatten(a) result = result + rest elif isinstance(a, mparser.StringNode): result.append(a.value) else: result.append(a) return result def noPosargs(f): @wraps(f) def wrapped(*wrapped_args, **wrapped_kwargs): args = _get_callee_args(wrapped_args)[2] if args: raise InvalidArguments('Function does not take positional arguments.') return f(*wrapped_args, **wrapped_kwargs) return wrapped def builtinMethodNoKwargs(f): @wraps(f) def wrapped(*wrapped_args, **wrapped_kwargs): node = wrapped_args[0].current_node method_name = wrapped_args[2] kwargs = wrapped_args[4] if kwargs: mlog.warning('Method {!r} does not take keyword arguments.'.format(method_name), 'This will become a hard error in the future', location=node) return f(*wrapped_args, **wrapped_kwargs) return wrapped def noKwargs(f): @wraps(f) def wrapped(*wrapped_args, **wrapped_kwargs): kwargs = _get_callee_args(wrapped_args)[3] if kwargs: raise InvalidArguments('Function does not take keyword arguments.') return f(*wrapped_args, **wrapped_kwargs) return wrapped def stringArgs(f): @wraps(f) def wrapped(*wrapped_args, **wrapped_kwargs): args = _get_callee_args(wrapped_args)[2] assert(isinstance(args, list)) check_stringlist(args) return f(*wrapped_args, **wrapped_kwargs) return wrapped def noArgsFlattening(f): setattr(f, 'no-args-flattening', True) # noqa: B010 return f def disablerIfNotFound(f): @wraps(f) def wrapped(*wrapped_args, **wrapped_kwargs): kwargs = _get_callee_args(wrapped_args)[3] disabler = kwargs.pop('disabler', False) ret = f(*wrapped_args, **wrapped_kwargs) if disabler and not ret.held_object.found(): return Disabler() return ret return wrapped class permittedKwargs: def __init__(self, permitted: T.Set[str]): self.permitted = permitted # type: T.Set[str] def __call__(self, f): @wraps(f) def wrapped(*wrapped_args, **wrapped_kwargs): s, node, args, kwargs, _ = _get_callee_args(wrapped_args) for k in kwargs: if k not in self.permitted: mlog.warning('''Passed invalid keyword argument "{}".'''.format(k), location=node) mlog.warning('This will become a hard error in the future.') return f(*wrapped_args, **wrapped_kwargs) return wrapped class FeatureCheckBase(metaclass=abc.ABCMeta): "Base class for feature version checks" # In python 3.6 we can just forward declare this, but in 3.5 we can't # This will be overwritten by the subclasses by necessity feature_registry = {} # type: T.ClassVar[T.Dict[str, T.Dict[str, T.Set[str]]]] def __init__(self, feature_name: str, version: str, extra_message: T.Optional[str] = None): self.feature_name = feature_name # type: str self.feature_version = version # type: str self.extra_message = extra_message or '' # type: str @staticmethod def get_target_version(subproject: str) -> str: # Don't do any checks if project() has not been parsed yet if subproject not in mesonlib.project_meson_versions: return '' return mesonlib.project_meson_versions[subproject] @staticmethod @abc.abstractmethod def check_version(target_version: str, feature_Version: str) -> bool: pass def use(self, subproject: str) -> None: tv = self.get_target_version(subproject) # No target version if tv == '': return # Target version is new enough if self.check_version(tv, self.feature_version): return # Feature is too new for target version, register it if subproject not in self.feature_registry: self.feature_registry[subproject] = {self.feature_version: set()} register = self.feature_registry[subproject] if self.feature_version not in register: register[self.feature_version] = set() if self.feature_name in register[self.feature_version]: # Don't warn about the same feature multiple times # FIXME: This is needed to prevent duplicate warnings, but also # means we won't warn about a feature used in multiple places. return register[self.feature_version].add(self.feature_name) self.log_usage_warning(tv) @classmethod def report(cls, subproject: str) -> None: if subproject not in cls.feature_registry: return warning_str = cls.get_warning_str_prefix(cls.get_target_version(subproject)) fv = cls.feature_registry[subproject] for version in sorted(fv.keys()): warning_str += '\n * {}: {}'.format(version, fv[version]) mlog.warning(warning_str) def log_usage_warning(self, tv: str) -> None: raise InterpreterException('log_usage_warning not implemented') @staticmethod def get_warning_str_prefix(tv: str) -> str: raise InterpreterException('get_warning_str_prefix not implemented') def __call__(self, f): @wraps(f) def wrapped(*wrapped_args, **wrapped_kwargs): subproject = _get_callee_args(wrapped_args, want_subproject=True)[4] if subproject is None: raise AssertionError('{!r}'.format(wrapped_args)) self.use(subproject) return f(*wrapped_args, **wrapped_kwargs) return wrapped @classmethod def single_use(cls, feature_name: str, version: str, subproject: str, extra_message: T.Optional[str] = None) -> None: """Oneline version that instantiates and calls use().""" cls(feature_name, version, extra_message).use(subproject) class FeatureNew(FeatureCheckBase): """Checks for new features""" # Class variable, shared across all instances # # Format: {subproject: {feature_version: set(feature_names)}} feature_registry = {} # type: T.ClassVar[T.Dict[str, T.Dict[str, T.Set[str]]]] @staticmethod def check_version(target_version: str, feature_version: str) -> bool: return mesonlib.version_compare_condition_with_min(target_version, feature_version) @staticmethod def get_warning_str_prefix(tv: str) -> str: return 'Project specifies a minimum meson_version \'{}\' but uses features which were added in newer versions:'.format(tv) def log_usage_warning(self, tv: str) -> None: args = [ 'Project targeting', "'{}'".format(tv), 'but tried to use feature introduced in', "'{}':".format(self.feature_version), '{}.'.format(self.feature_name), ] if self.extra_message: args.append(self.extra_message) mlog.warning(*args) class FeatureDeprecated(FeatureCheckBase): """Checks for deprecated features""" # Class variable, shared across all instances # # Format: {subproject: {feature_version: set(feature_names)}} feature_registry = {} # type: T.ClassVar[T.Dict[str, T.Dict[str, T.Set[str]]]] @staticmethod def check_version(target_version: str, feature_version: str) -> bool: # For deprecation checks we need to return the inverse of FeatureNew checks return not mesonlib.version_compare_condition_with_min(target_version, feature_version) @staticmethod def get_warning_str_prefix(tv: str) -> str: return 'Deprecated features used:' def log_usage_warning(self, tv: str) -> None: args = [ 'Project targeting', "'{}'".format(tv), 'but tried to use feature deprecated since', "'{}':".format(self.feature_version), '{}.'.format(self.feature_name), ] if self.extra_message: args.append(self.extra_message) mlog.warning(*args) class FeatureCheckKwargsBase(metaclass=abc.ABCMeta): @property @abc.abstractmethod def feature_check_class(self) -> T.Type[FeatureCheckBase]: pass def __init__(self, feature_name: str, feature_version: str, kwargs: T.List[str], extra_message: T.Optional[str] = None): self.feature_name = feature_name self.feature_version = feature_version self.kwargs = kwargs self.extra_message = extra_message def __call__(self, f): @wraps(f) def wrapped(*wrapped_args, **wrapped_kwargs): kwargs, subproject = _get_callee_args(wrapped_args, want_subproject=True)[3:5] if subproject is None: raise AssertionError('{!r}'.format(wrapped_args)) for arg in self.kwargs: if arg not in kwargs: continue name = arg + ' arg in ' + self.feature_name self.feature_check_class.single_use( name, self.feature_version, subproject, self.extra_message) return f(*wrapped_args, **wrapped_kwargs) return wrapped class FeatureNewKwargs(FeatureCheckKwargsBase): feature_check_class = FeatureNew class FeatureDeprecatedKwargs(FeatureCheckKwargsBase): feature_check_class = FeatureDeprecated class InterpreterException(mesonlib.MesonException): pass class InvalidCode(InterpreterException): pass class InvalidArguments(InterpreterException): pass class SubdirDoneRequest(BaseException): pass class ContinueRequest(BaseException): pass class BreakRequest(BaseException): pass class MutableInterpreterObject(InterpreterObject): def __init__(self): super().__init__() class Disabler(InterpreterObject): def __init__(self): super().__init__() self.methods.update({'found': self.found_method}) def found_method(self, args, kwargs): return False def is_disabler(i) -> bool: return isinstance(i, Disabler) def is_arg_disabled(arg) -> bool: if is_disabler(arg): return True if isinstance(arg, list): for i in arg: if is_arg_disabled(i): return True return False def is_disabled(args, kwargs) -> bool: for i in args: if is_arg_disabled(i): return True for i in kwargs.values(): if is_arg_disabled(i): return True return False class InterpreterBase: elementary_types = (int, float, str, bool, list) def __init__(self, source_root: str, subdir: str, subproject: str): self.source_root = source_root self.funcs = {} # type: T.Dict[str, T.Callable[[mparser.BaseNode, T.List[TYPE_nvar], T.Dict[str, TYPE_nvar]], TYPE_var]] self.builtin = {} # type: T.Dict[str, InterpreterObject] self.subdir = subdir self.subproject = subproject self.variables = {} # type: T.Dict[str, TYPE_var] self.argument_depth = 0 self.current_lineno = -1 # Current node set during a function call. This can be used as location # when printing a warning message during a method call. self.current_node = None # type: mparser.BaseNode def load_root_meson_file(self) -> None: mesonfile = os.path.join(self.source_root, self.subdir, environment.build_filename) if not os.path.isfile(mesonfile): raise InvalidArguments('Missing Meson file in %s' % mesonfile) with open(mesonfile, encoding='utf8') as mf: code = mf.read() if code.isspace(): raise InvalidCode('Builder file is empty.') assert(isinstance(code, str)) try: self.ast = mparser.Parser(code, mesonfile).parse() except mesonlib.MesonException as me: me.file = mesonfile raise me def join_path_strings(self, args: T.Sequence[str]) -> str: return os.path.join(*args).replace('\\', '/') def parse_project(self) -> None: """ Parses project() and initializes languages, compilers etc. Do this early because we need this before we parse the rest of the AST. """ self.evaluate_codeblock(self.ast, end=1) def sanity_check_ast(self) -> None: if not isinstance(self.ast, mparser.CodeBlockNode): raise InvalidCode('AST is of invalid type. Possibly a bug in the parser.') if not self.ast.lines: raise InvalidCode('No statements in code.') first = self.ast.lines[0] if not isinstance(first, mparser.FunctionNode) or first.func_name != 'project': raise InvalidCode('First statement must be a call to project') def run(self) -> None: # Evaluate everything after the first line, which is project() because # we already parsed that in self.parse_project() try: self.evaluate_codeblock(self.ast, start=1) except SubdirDoneRequest: pass def evaluate_codeblock(self, node: mparser.CodeBlockNode, start: int = 0, end: T.Optional[int] = None) -> None: if node is None: return if not isinstance(node, mparser.CodeBlockNode): e = InvalidCode('Tried to execute a non-codeblock. Possibly a bug in the parser.') e.lineno = node.lineno e.colno = node.colno raise e statements = node.lines[start:end] i = 0 while i < len(statements): cur = statements[i] try: self.current_lineno = cur.lineno self.evaluate_statement(cur) except Exception as e: if getattr(e, 'lineno', None) is None: # We are doing the equivalent to setattr here and mypy does not like it e.lineno = cur.lineno # type: ignore e.colno = cur.colno # type: ignore e.file = os.path.join(self.source_root, self.subdir, environment.build_filename) # type: ignore raise e i += 1 # In THE FUTURE jump over blocks and stuff. def evaluate_statement(self, cur: mparser.BaseNode) -> T.Optional[TYPE_var]: self.current_node = cur if isinstance(cur, mparser.FunctionNode): return self.function_call(cur) elif isinstance(cur, mparser.AssignmentNode): self.assignment(cur) elif isinstance(cur, mparser.MethodNode): return self.method_call(cur) elif isinstance(cur, mparser.StringNode): return cur.value elif isinstance(cur, mparser.BooleanNode): return cur.value elif isinstance(cur, mparser.IfClauseNode): return self.evaluate_if(cur) elif isinstance(cur, mparser.IdNode): return self.get_variable(cur.value) elif isinstance(cur, mparser.ComparisonNode): return self.evaluate_comparison(cur) elif isinstance(cur, mparser.ArrayNode): return self.evaluate_arraystatement(cur) elif isinstance(cur, mparser.DictNode): return self.evaluate_dictstatement(cur) elif isinstance(cur, mparser.NumberNode): return cur.value elif isinstance(cur, mparser.AndNode): return self.evaluate_andstatement(cur) elif isinstance(cur, mparser.OrNode): return self.evaluate_orstatement(cur) elif isinstance(cur, mparser.NotNode): return self.evaluate_notstatement(cur) elif isinstance(cur, mparser.UMinusNode): return self.evaluate_uminusstatement(cur) elif isinstance(cur, mparser.ArithmeticNode): return self.evaluate_arithmeticstatement(cur) elif isinstance(cur, mparser.ForeachClauseNode): self.evaluate_foreach(cur) elif isinstance(cur, mparser.PlusAssignmentNode): self.evaluate_plusassign(cur) elif isinstance(cur, mparser.IndexNode): return self.evaluate_indexing(cur) elif isinstance(cur, mparser.TernaryNode): return self.evaluate_ternary(cur) elif isinstance(cur, mparser.ContinueNode): raise ContinueRequest() elif isinstance(cur, mparser.BreakNode): raise BreakRequest() elif isinstance(cur, self.elementary_types): return cur else: raise InvalidCode("Unknown statement.") return None def evaluate_arraystatement(self, cur: mparser.ArrayNode) -> list: (arguments, kwargs) = self.reduce_arguments(cur.args) if len(kwargs) > 0: raise InvalidCode('Keyword arguments are invalid in array construction.') return arguments @FeatureNew('dict', '0.47.0') def evaluate_dictstatement(self, cur: mparser.DictNode) -> T.Dict[str, T.Any]: (arguments, kwargs) = self.reduce_arguments(cur.args, resolve_key_nodes=False) assert (not arguments) result = {} # type: T.Dict[str, T.Any] self.argument_depth += 1 for key, value in kwargs.items(): if not isinstance(key, mparser.StringNode): FeatureNew.single_use('Dictionary entry using non literal key', '0.53.0', self.subproject) assert isinstance(key, mparser.BaseNode) # All keys must be nodes due to resolve_key_nodes=False str_key = self.evaluate_statement(key) if not isinstance(str_key, str): raise InvalidArguments('Key must be a string') if str_key in result: raise InvalidArguments('Duplicate dictionary key: {}'.format(str_key)) result[str_key] = value self.argument_depth -= 1 return result def evaluate_notstatement(self, cur: mparser.NotNode) -> T.Union[bool, Disabler]: v = self.evaluate_statement(cur.value) if isinstance(v, Disabler): return v if not isinstance(v, bool): raise InterpreterException('Argument to "not" is not a boolean.') return not v def evaluate_if(self, node: mparser.IfClauseNode) -> T.Optional[Disabler]: assert(isinstance(node, mparser.IfClauseNode)) for i in node.ifs: result = self.evaluate_statement(i.condition) if isinstance(result, Disabler): return result if not(isinstance(result, bool)): raise InvalidCode('If clause {!r} does not evaluate to true or false.'.format(result)) if result: self.evaluate_codeblock(i.block) return None if not isinstance(node.elseblock, mparser.EmptyNode): self.evaluate_codeblock(node.elseblock) return None def validate_comparison_types(self, val1: T.Any, val2: T.Any) -> bool: if type(val1) != type(val2): return False return True def evaluate_in(self, val1: T.Any, val2: T.Any) -> bool: if not isinstance(val1, (str, int, float, ObjectHolder)): raise InvalidArguments('lvalue of "in" operator must be a string, integer, float, or object') if not isinstance(val2, (list, dict)): raise InvalidArguments('rvalue of "in" operator must be an array or a dict') return val1 in val2 def evaluate_comparison(self, node: mparser.ComparisonNode) -> T.Union[bool, Disabler]: val1 = self.evaluate_statement(node.left) if isinstance(val1, Disabler): return val1 val2 = self.evaluate_statement(node.right) if isinstance(val2, Disabler): return val2 if node.ctype == 'in': return self.evaluate_in(val1, val2) elif node.ctype == 'notin': return not self.evaluate_in(val1, val2) valid = self.validate_comparison_types(val1, val2) # Ordering comparisons of different types isn't allowed since PR #1810 # (0.41.0). Since PR #2884 we also warn about equality comparisons of # different types, which will one day become an error. if not valid and (node.ctype == '==' or node.ctype == '!='): mlog.warning('''Trying to compare values of different types ({}, {}) using {}. The result of this is undefined and will become a hard error in a future Meson release.''' .format(type(val1).__name__, type(val2).__name__, node.ctype), location=node) if node.ctype == '==': return val1 == val2 elif node.ctype == '!=': return val1 != val2 elif not valid: raise InterpreterException( 'Values of different types ({}, {}) cannot be compared using {}.'.format(type(val1).__name__, type(val2).__name__, node.ctype)) elif not isinstance(val1, self.elementary_types): raise InterpreterException('{} can only be compared for equality.'.format(getattr(node.left, 'value', ''))) elif not isinstance(val2, self.elementary_types): raise InterpreterException('{} can only be compared for equality.'.format(getattr(node.right, 'value', ''))) # Use type: ignore because mypy will complain that we are comparing two Unions, # but we actually guarantee earlier that both types are the same elif node.ctype == '<': return val1 < val2 # type: ignore elif node.ctype == '<=': return val1 <= val2 # type: ignore elif node.ctype == '>': return val1 > val2 # type: ignore elif node.ctype == '>=': return val1 >= val2 # type: ignore else: raise InvalidCode('You broke my compare eval.') def evaluate_andstatement(self, cur: mparser.AndNode) -> T.Union[bool, Disabler]: l = self.evaluate_statement(cur.left) if isinstance(l, Disabler): return l if not isinstance(l, bool): raise InterpreterException('First argument to "and" is not a boolean.') if not l: return False r = self.evaluate_statement(cur.right) if isinstance(r, Disabler): return r if not isinstance(r, bool): raise InterpreterException('Second argument to "and" is not a boolean.') return r def evaluate_orstatement(self, cur: mparser.OrNode) -> T.Union[bool, Disabler]: l = self.evaluate_statement(cur.left) if isinstance(l, Disabler): return l if not isinstance(l, bool): raise InterpreterException('First argument to "or" is not a boolean.') if l: return True r = self.evaluate_statement(cur.right) if isinstance(r, Disabler): return r if not isinstance(r, bool): raise InterpreterException('Second argument to "or" is not a boolean.') return r def evaluate_uminusstatement(self, cur) -> T.Union[int, Disabler]: v = self.evaluate_statement(cur.value) if isinstance(v, Disabler): return v if not isinstance(v, int): raise InterpreterException('Argument to negation is not an integer.') return -v @FeatureNew('/ with string arguments', '0.49.0') def evaluate_path_join(self, l: str, r: str) -> str: if not isinstance(l, str): raise InvalidCode('The division operator can only append to a string.') if not isinstance(r, str): raise InvalidCode('The division operator can only append a string.') return self.join_path_strings((l, r)) def evaluate_division(self, l: T.Any, r: T.Any) -> T.Union[int, str]: if isinstance(l, str) or isinstance(r, str): return self.evaluate_path_join(l, r) if isinstance(l, int) and isinstance(r, int): if r == 0: raise InvalidCode('Division by zero.') return l // r raise InvalidCode('Division works only with strings or integers.') def evaluate_arithmeticstatement(self, cur: mparser.ArithmeticNode) -> T.Union[int, str, dict, list, Disabler]: l = self.evaluate_statement(cur.left) if isinstance(l, Disabler): return l r = self.evaluate_statement(cur.right) if isinstance(r, Disabler): return r if cur.operation == 'add': if isinstance(l, dict) and isinstance(r, dict): return {**l, **r} try: # MyPy error due to handling two Unions (we are catching all exceptions anyway) return l + r # type: ignore except Exception as e: raise InvalidCode('Invalid use of addition: ' + str(e)) elif cur.operation == 'sub': if not isinstance(l, int) or not isinstance(r, int): raise InvalidCode('Subtraction works only with integers.') return l - r elif cur.operation == 'mul': if not isinstance(l, int) or not isinstance(r, int): raise InvalidCode('Multiplication works only with integers.') return l * r elif cur.operation == 'div': return self.evaluate_division(l, r) elif cur.operation == 'mod': if not isinstance(l, int) or not isinstance(r, int): raise InvalidCode('Modulo works only with integers.') return l % r else: raise InvalidCode('You broke me.') def evaluate_ternary(self, node: mparser.TernaryNode) -> TYPE_var: assert(isinstance(node, mparser.TernaryNode)) result = self.evaluate_statement(node.condition) if isinstance(result, Disabler): return result if not isinstance(result, bool): raise InterpreterException('Ternary condition is not boolean.') if result: return self.evaluate_statement(node.trueblock) else: return self.evaluate_statement(node.falseblock) def evaluate_foreach(self, node: mparser.ForeachClauseNode) -> None: assert(isinstance(node, mparser.ForeachClauseNode)) items = self.evaluate_statement(node.items) if isinstance(items, list): if len(node.varnames) != 1: raise InvalidArguments('Foreach on array does not unpack') varname = node.varnames[0] for item in items: self.set_variable(varname, item) try: self.evaluate_codeblock(node.block) except ContinueRequest: continue except BreakRequest: break elif isinstance(items, dict): if len(node.varnames) != 2: raise InvalidArguments('Foreach on dict unpacks key and value') for key, value in items.items(): self.set_variable(node.varnames[0], key) self.set_variable(node.varnames[1], value) try: self.evaluate_codeblock(node.block) except ContinueRequest: continue except BreakRequest: break else: raise InvalidArguments('Items of foreach loop must be an array or a dict') def evaluate_plusassign(self, node: mparser.PlusAssignmentNode) -> None: assert(isinstance(node, mparser.PlusAssignmentNode)) varname = node.var_name addition = self.evaluate_statement(node.value) # Remember that all variables are immutable. We must always create a # full new variable and then assign it. old_variable = self.get_variable(varname) new_value = None # type: T.Union[str, int, float, bool, dict, list] if isinstance(old_variable, str): if not isinstance(addition, str): raise InvalidArguments('The += operator requires a string on the right hand side if the variable on the left is a string') new_value = old_variable + addition elif isinstance(old_variable, int): if not isinstance(addition, int): raise InvalidArguments('The += operator requires an int on the right hand side if the variable on the left is an int') new_value = old_variable + addition elif isinstance(old_variable, list): if isinstance(addition, list): new_value = old_variable + addition else: new_value = old_variable + [addition] elif isinstance(old_variable, dict): if not isinstance(addition, dict): raise InvalidArguments('The += operator requires a dict on the right hand side if the variable on the left is a dict') new_value = {**old_variable, **addition} # Add other data types here. else: raise InvalidArguments('The += operator currently only works with arrays, dicts, strings or ints') self.set_variable(varname, new_value) def evaluate_indexing(self, node: mparser.IndexNode) -> TYPE_var: assert(isinstance(node, mparser.IndexNode)) iobject = self.evaluate_statement(node.iobject) if isinstance(iobject, Disabler): return iobject if not hasattr(iobject, '__getitem__'): raise InterpreterException( 'Tried to index an object that doesn\'t support indexing.') index = self.evaluate_statement(node.index) if isinstance(iobject, dict): if not isinstance(index, str): raise InterpreterException('Key is not a string') try: return iobject[index] except KeyError: raise InterpreterException('Key %s is not in dict' % index) else: if not isinstance(index, int): raise InterpreterException('Index value is not an integer.') try: # Ignore the MyPy error, since we don't know all indexable types here # and we handle non indexable types with an exception # TODO maybe find a better solution return iobject[index] # type: ignore except IndexError: # We are already checking for the existance of __getitem__, so this should be save raise InterpreterException('Index %d out of bounds of array of size %d.' % (index, len(iobject))) # type: ignore def function_call(self, node: mparser.FunctionNode) -> T.Optional[TYPE_var]: func_name = node.func_name (posargs, kwargs) = self.reduce_arguments(node.args) if is_disabled(posargs, kwargs) and func_name not in {'get_variable', 'set_variable', 'is_disabler'}: return Disabler() if func_name in self.funcs: func = self.funcs[func_name] func_args = posargs # type: T.Any if not getattr(func, 'no-args-flattening', False): func_args = flatten(posargs) return func(node, func_args, self.kwargs_string_keys(kwargs)) else: self.unknown_function_called(func_name) return None def method_call(self, node: mparser.MethodNode) -> TYPE_var: invokable = node.source_object if isinstance(invokable, mparser.IdNode): object_name = invokable.value obj = self.get_variable(object_name) else: obj = self.evaluate_statement(invokable) method_name = node.name (args, kwargs) = self.reduce_arguments(node.args) if is_disabled(args, kwargs): return Disabler() if isinstance(obj, str): return self.string_method_call(obj, method_name, args, kwargs) if isinstance(obj, bool): return self.bool_method_call(obj, method_name, args, kwargs) if isinstance(obj, int): return self.int_method_call(obj, method_name, args, kwargs) if isinstance(obj, list): return self.array_method_call(obj, method_name, args, kwargs) if isinstance(obj, dict): return self.dict_method_call(obj, method_name, args, kwargs) if isinstance(obj, mesonlib.File): raise InvalidArguments('File object "%s" is not callable.' % obj) if not isinstance(obj, InterpreterObject): raise InvalidArguments('Variable "%s" is not callable.' % object_name) # Special case. This is the only thing you can do with a disabler # object. Every other use immediately returns the disabler object. if isinstance(obj, Disabler): if method_name == 'found': return False else: return Disabler() if method_name == 'extract_objects': if not isinstance(obj, ObjectHolder): raise InvalidArguments('Invalid operation "extract_objects" on variable "{}"'.format(object_name)) self.validate_extraction(obj.held_object) obj.current_node = node return obj.method_call(method_name, args, self.kwargs_string_keys(kwargs)) @builtinMethodNoKwargs def bool_method_call(self, obj: bool, method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> T.Union[str, int]: if method_name == 'to_string': if not posargs: if obj: return 'true' else: return 'false' elif len(posargs) == 2 and isinstance(posargs[0], str) and isinstance(posargs[1], str): if obj: return posargs[0] else: return posargs[1] else: raise InterpreterException('bool.to_string() must have either no arguments or exactly two string arguments that signify what values to return for true and false.') elif method_name == 'to_int': if obj: return 1 else: return 0 else: raise InterpreterException('Unknown method "%s" for a boolean.' % method_name) @builtinMethodNoKwargs def int_method_call(self, obj: int, method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> T.Union[str, bool]: if method_name == 'is_even': if not posargs: return obj % 2 == 0 else: raise InterpreterException('int.is_even() must have no arguments.') elif method_name == 'is_odd': if not posargs: return obj % 2 != 0 else: raise InterpreterException('int.is_odd() must have no arguments.') elif method_name == 'to_string': if not posargs: return str(obj) else: raise InterpreterException('int.to_string() must have no arguments.') else: raise InterpreterException('Unknown method "%s" for an integer.' % method_name) @staticmethod def _get_one_string_posarg(posargs: T.List[TYPE_nvar], method_name: str) -> str: if len(posargs) > 1: m = '{}() must have zero or one arguments' raise InterpreterException(m.format(method_name)) elif len(posargs) == 1: s = posargs[0] if not isinstance(s, str): m = '{}() argument must be a string' raise InterpreterException(m.format(method_name)) return s return None @builtinMethodNoKwargs def string_method_call(self, obj: str, method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> T.Union[str, int, bool, T.List[str]]: if method_name == 'strip': s1 = self._get_one_string_posarg(posargs, 'strip') if s1 is not None: return obj.strip(s1) return obj.strip() elif method_name == 'format': return self.format_string(obj, posargs) elif method_name == 'to_upper': return obj.upper() elif method_name == 'to_lower': return obj.lower() elif method_name == 'underscorify': return re.sub(r'[^a-zA-Z0-9]', '_', obj) elif method_name == 'split': s2 = self._get_one_string_posarg(posargs, 'split') if s2 is not None: return obj.split(s2) return obj.split() elif method_name == 'startswith' or method_name == 'contains' or method_name == 'endswith': s3 = posargs[0] if not isinstance(s3, str): raise InterpreterException('Argument must be a string.') if method_name == 'startswith': return obj.startswith(s3) elif method_name == 'contains': return obj.find(s3) >= 0 return obj.endswith(s3) elif method_name == 'to_int': try: return int(obj) except Exception: raise InterpreterException('String {!r} cannot be converted to int'.format(obj)) elif method_name == 'join': if len(posargs) != 1: raise InterpreterException('Join() takes exactly one argument.') strlist = posargs[0] check_stringlist(strlist) assert isinstance(strlist, list) # Required for mypy return obj.join(strlist) elif method_name == 'version_compare': if len(posargs) != 1: raise InterpreterException('Version_compare() takes exactly one argument.') cmpr = posargs[0] if not isinstance(cmpr, str): raise InterpreterException('Version_compare() argument must be a string.') return mesonlib.version_compare(obj, cmpr) elif method_name == 'substring': if len(posargs) > 2: raise InterpreterException('substring() takes maximum two arguments.') start = 0 end = len(obj) if len (posargs) > 0: if not isinstance(posargs[0], int): raise InterpreterException('substring() argument must be an int') start = posargs[0] if len (posargs) > 1: if not isinstance(posargs[1], int): raise InterpreterException('substring() argument must be an int') end = posargs[1] return obj[start:end] raise InterpreterException('Unknown method "%s" for a string.' % method_name) def format_string(self, templ: str, args: T.List[TYPE_nvar]) -> str: arg_strings = [] for arg in args: if isinstance(arg, mparser.BaseNode): arg = self.evaluate_statement(arg) if isinstance(arg, bool): # Python boolean is upper case. arg = str(arg).lower() arg_strings.append(str(arg)) def arg_replace(match): idx = int(match.group(1)) if idx >= len(arg_strings): raise InterpreterException('Format placeholder @{}@ out of range.'.format(idx)) return arg_strings[idx] return re.sub(r'@(\d+)@', arg_replace, templ) def unknown_function_called(self, func_name: str) -> None: raise InvalidCode('Unknown function "%s".' % func_name) @builtinMethodNoKwargs def array_method_call(self, obj: list, method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> TYPE_var: if method_name == 'contains': def check_contains(el: list) -> bool: if len(posargs) != 1: raise InterpreterException('Contains method takes exactly one argument.') item = posargs[0] for element in el: if isinstance(element, list): found = check_contains(element) if found: return True if element == item: return True return False return check_contains(obj) elif method_name == 'length': return len(obj) elif method_name == 'get': index = posargs[0] fallback = None if len(posargs) == 2: fallback = posargs[1] elif len(posargs) > 2: m = 'Array method \'get()\' only takes two arguments: the ' \ 'index and an optional fallback value if the index is ' \ 'out of range.' raise InvalidArguments(m) if not isinstance(index, int): raise InvalidArguments('Array index must be a number.') if index < -len(obj) or index >= len(obj): if fallback is None: m = 'Array index {!r} is out of bounds for array of size {!r}.' raise InvalidArguments(m.format(index, len(obj))) if isinstance(fallback, mparser.BaseNode): return self.evaluate_statement(fallback) return fallback return obj[index] m = 'Arrays do not have a method called {!r}.' raise InterpreterException(m.format(method_name)) @builtinMethodNoKwargs def dict_method_call(self, obj: dict, method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> TYPE_var: if method_name in ('has_key', 'get'): if method_name == 'has_key': if len(posargs) != 1: raise InterpreterException('has_key() takes exactly one argument.') else: if len(posargs) not in (1, 2): raise InterpreterException('get() takes one or two arguments.') key = posargs[0] if not isinstance(key, (str)): raise InvalidArguments('Dictionary key must be a string.') has_key = key in obj if method_name == 'has_key': return has_key if has_key: return obj[key] if len(posargs) == 2: fallback = posargs[1] if isinstance(fallback, mparser.BaseNode): return self.evaluate_statement(fallback) return fallback raise InterpreterException('Key {!r} is not in the dictionary.'.format(key)) if method_name == 'keys': if len(posargs) != 0: raise InterpreterException('keys() takes no arguments.') return list(obj.keys()) raise InterpreterException('Dictionaries do not have a method called "%s".' % method_name) def reduce_arguments(self, args: mparser.ArgumentNode, resolve_key_nodes: bool = True) -> T.Tuple[T.List[TYPE_nvar], TYPE_nkwargs]: assert(isinstance(args, mparser.ArgumentNode)) if args.incorrect_order(): raise InvalidArguments('All keyword arguments must be after positional arguments.') self.argument_depth += 1 reduced_pos = [self.evaluate_statement(arg) for arg in args.arguments] # type: T.List[TYPE_nvar] reduced_kw = {} # type: TYPE_nkwargs for key, val in args.kwargs.items(): reduced_key = key # type: T.Union[str, mparser.BaseNode] reduced_val = val # type: TYPE_nvar if resolve_key_nodes and isinstance(key, mparser.IdNode): assert isinstance(key.value, str) reduced_key = key.value if isinstance(reduced_val, mparser.BaseNode): reduced_val = self.evaluate_statement(reduced_val) reduced_kw[reduced_key] = reduced_val self.argument_depth -= 1 final_kw = self.expand_default_kwargs(reduced_kw) return reduced_pos, final_kw def expand_default_kwargs(self, kwargs: TYPE_nkwargs) -> TYPE_nkwargs: if 'kwargs' not in kwargs: return kwargs to_expand = kwargs.pop('kwargs') if not isinstance(to_expand, dict): raise InterpreterException('Value of "kwargs" must be dictionary.') if 'kwargs' in to_expand: raise InterpreterException('Kwargs argument must not contain a "kwargs" entry. Points for thinking meta, though. :P') for k, v in to_expand.items(): if k in kwargs: raise InterpreterException('Entry "{}" defined both as a keyword argument and in a "kwarg" entry.'.format(k)) kwargs[k] = v return kwargs def kwargs_string_keys(self, kwargs: TYPE_nkwargs) -> T.Dict[str, TYPE_nvar]: kw = {} # type: T.Dict[str, TYPE_nvar] for key, val in kwargs.items(): if not isinstance(key, str): raise InterpreterException('Key of kwargs is not a string') kw[key] = val return kw def assignment(self, node: mparser.AssignmentNode) -> None: assert(isinstance(node, mparser.AssignmentNode)) if self.argument_depth != 0: raise InvalidArguments('''Tried to assign values inside an argument list. To specify a keyword argument, use : instead of =.''') var_name = node.var_name if not isinstance(var_name, str): raise InvalidArguments('Tried to assign value to a non-variable.') value = self.evaluate_statement(node.value) if not self.is_assignable(value): raise InvalidCode('Tried to assign an invalid value to variable.') # For mutable objects we need to make a copy on assignment if isinstance(value, MutableInterpreterObject): value = copy.deepcopy(value) self.set_variable(var_name, value) return None def set_variable(self, varname: str, variable: TYPE_var) -> None: if variable is None: raise InvalidCode('Can not assign None to variable.') if not isinstance(varname, str): raise InvalidCode('First argument to set_variable must be a string.') if not self.is_assignable(variable): raise InvalidCode('Assigned value not of assignable type.') if re.match('[_a-zA-Z][_0-9a-zA-Z]*$', varname) is None: raise InvalidCode('Invalid variable name: ' + varname) if varname in self.builtin: raise InvalidCode('Tried to overwrite internal variable "%s"' % varname) self.variables[varname] = variable def get_variable(self, varname) -> TYPE_var: if varname in self.builtin: return self.builtin[varname] if varname in self.variables: return self.variables[varname] raise InvalidCode('Unknown variable "%s".' % varname) def is_assignable(self, value: T.Any) -> bool: return isinstance(value, (InterpreterObject, dependencies.Dependency, str, int, list, dict, mesonlib.File)) def validate_extraction(self, buildtarget: InterpreterObject) -> None: raise InterpreterException('validate_extraction is not implemented in this context (please file a bug)')