Way back in Meson 0.25, support was added to `vala_args` for Files.
Strangely, this was never added to any other language, though it's been
discussed before. For type safety, it makes more sense to handle this in
the interpreter level, and pass only strings into the build IR.
This is accomplished by adding a `depend_files` field to the
`BuildTarget` class (which is not exposed to the user), and adding the
depend files into that field, while converting the arguments to relative
string paths. This ensures both the proper build dependencies happen, as
well as that the arguments are always strings.
When checking target names, meson explictly forbids having multiple
targets with the same name. This is good, but it is strict and it is
impossible to have targets with the same basename and differing suffixes
(e.g. foo and foo.bin) in the same directory. Allow this for executables
by including the suffix (if it exists) in the interal target id. So foo
would be foo@exe and foo.bin would be foo.bin@exe.
Allow macro_name to be speficied as a parameter to configure_file().
This allows C macro-style include guards to be added to
configure_file()'s output when a template file is not given. This change
simplifies the creation of configure files that define macros with
dynamic names and want the C-style include guards.
A standard C library may not exist for cross-compile
environments, thus the existence of <stdio.h> cannot be
guaranteed.
Use <stddef.h> instead, this header contains compiler-specific
defines thus it usually comes from the compiler.
Adds a new method to the compiler object, has_define.
This makes it possible to check if a preprocessor macro/define
is set or not.
This is especially helpful if the define in question is empty,
for example:
#define MESON_EMPTY_DEFINE
This would yield the same results as a missing define with
the existing get_define method, as it would return an empty
string for both cases. Therefore this additional method is
needed.
add the "required" keyword to the functions
has_function
has_type
has_member
has_members
has_argument
has_multi_arguments
has_link_argument
has_multi_link_argument
has_function_attribute
Co-authored-by: Milan Hauth <milahu@gmail.com>
The wording was a bit confusing and misled at least one person into
thinking it behaved like `str.replace('c', '')` operating on the entire
line. Tweak the wording to be more precise and avoid this confusion.
This fixes two issues in constructing the default installation path
when install_dir is not specified:
- inside a subproject, install_data() would construct the destination
path using the parent project name instead than the current project
name,
- when specifying preserve_path, install_data() would construct the
destination path omitting the project name.
Fixes#11910.
Jar has a very low set of overlap with other target types, including
that jar sources *must* be .java, and no other target allows .java
sources. As such, the difficulty in crafting a useful `build_target`
invocation that allows both `jar` and anything else is high, and the
usefulness is dubious. Just use `jar()` directly instead.
This depends on the changes to make all of the jar() specific keyword
arguments be handled by typed_kwargs so that the deprecation messages
are correct and consistent.
This is a side effect of requiring Python >= 3.7 which itself guarantees
dictionary order. This is now a Meson language guarantee as well which
is required for passing default_options as dict and is generally
expected by users.
The new splitlines method on str is intended to replace usage of
fs.read('whatever').strip().split('\n').
The problem with the .strip().split() approach is that it doesn't have a
way to represent empty lists (an empty string becomes a list with one
empty string, not an empty list), and it doesn't handle Windows-style
line endings.
We silently dropped all integer values to install_mode since the
original implementation of doing this in KwargInfo, in commit
596c8d4af5.
This happened because install_mode is supposed to convert False
(exactly) to None, and otherwise pass all arguments in place. But a
generator is homogeneous and attempting to do this correctly produced a
mypy error that FileMode arguments were allowed to be ints -- well of
course they are -- so that resulted in the convertor... treating ints
like False instead, to make mypy happy.
Fixes#11538
This allows changing the crate name with which a library ends up being
available inside the Rust code, similar to cargo's dependency renaming
feature or `extern crate foo as bar` inside Rust code.
We will still try to load `meson_options.txt` if `meson.options` doesn't
exist. Because there are some advantages to using `meson.options` even
with older versions of meson (such as better text editor handling)
we will not warn about the existence of a `meson.options` file if a
`meson_options.txt` file or symlink also exists.
The name `meson.options` was picked instead of alternative proposals,
such as `meson_options.build` for a couple of reasons:
1. meson.options is shorter
2. While the syntax is the same, only the `option()` function may be
called in meson.options, while, it may not be called in meson.build
3. While the two files share a syntax and elementary types (strings,
arrays, etc), they have different purposes: `meson.build` declares
build targets, `meson.options` declares options. This is similar to
the difference between C's `.c` and `.h` extensions.
As an implementation detail `Interpreter.option_file` has been removed,
as it is used exactly once, in the `project()` call to read the options,
and we can just calculate it there and not store it.
Fixes: #11176
As discussed in issue #8037, using `c_args` in `project()` leads to
`CFLAGS` not being respected, which is a common mistake. Document this
and suggest using `add_project_arguments()` instead.
Signed-off-by: John Levon <levon@movementarian.org>
This method allows meson.build to introspect on the changed options.
It works by merely exposing the same set of data that is logged by
MesonApp._generate.
Fixes#10898
This adds two new methods, that are conceptually related in the same way
that `enable_auto_if` and `disable_auto_if` are. They are different
however, in that they will always replace an `auto` value with an
`enabled` or `disabled` value, or error if the feature is in the
opposite state (calling `feature(disabled).enable_if(true)`, for
example). This matters when the feature will be passed to
dependency(required : …)`, which has different behavior when passed an
enabled feature than an auto one.
The `disable_if` method will be controversial, I'm sure, since it
can be expressed via `feature.require()` (`feature.require(not
condition) == feature.disable_if(condition)`). I have two defences of
this:
1) `feature.require` is difficult to reason about, I would expect
require to be equivalent to `feature.enable_if(condition)`, not to
`feature.disable_if(not condition)`.
2) mixing `enable_if` and `disable_if` in the same call chain is much
clearer than mixing `require` and `enable_if`:
```meson
get_option('feat') \
.enable_if(foo) \
.disable_if(bar) \
.enable_if(opt)
```
vs
```meson
get_option('feat') \
.enable_if(foo) \
.require(not bar) \
.enable_if(opt)
```
In the first chain it's immediately obvious what is happening, in the
second, not so much, especially if you're not familiar with what
`require` means.
It's always been strange to me we don't have an opposite method of the
`disable_auto_if` method, but I've been pressed to find a case where we
_need_ one, because `disable_auto_if` can't be logically contorted to
work. I finally found the case where they're not equivalent: when you
don't want to convert to a boolean:
```meson
f = get_option('feat').disable_auto_if(not foo)
g = get_option('feat').enable_auto_if(foo)
dep1 = dependency('foo', required : f)
dep2 = dependency('foo', required : g)
```