We can now specify the library type we want to search for, and whether
we want to prefer static libraries over shared ones or the other way
around. This functionality is not exposed to build files yet.
Otherwise we might end up with wrapper holders in the Build object and
pickling will then fail, defeating the purpose of the holder objects.
Closes https://github.com/mesonbuild/meson/issues/2211
Currently if flatten() is passed a non-list object, it returns that
object. This is surprising behavior, and prone to causing serious and
numerous problems, since many objects implement the iterable interface,
and thus can be used in cases a list is expected, but with undesirable
results.
The old caching was a mess of spaghetti code layered over pasta code.
The new code is well-commented, is clear about what it's trying to do,
and uses a blacklist of keyword arguments instead of a whitelist while
generating identifiers for dep caching which makes it much more robust
for future changes.
The only side-effect of forgetting about a new keyword argument would
be that the dependency would not be cached unless the values of that
keyword arguments were the same in the cached and new dependency.
There are also more tests which identify scenarios that were broken
earlier.
This implementation is obvious rather than efficient, but it's efficient
enough for our uses I think. It uses `type(self)` to guarantee that it
works even in subclasses or if the name of the class changes.
It's much faster to do 'if a in dict' instead of 'if a in dict.keys()',
since the latter constructs an iterator and walks that iterator and then
tests equality at each step, and the former does a single hash lookup.
This uses the ABC's in collections to implement an OrderedSet class.
Internally an OrderedDict is still wrapped so that the ordering is
maintained, this adds the full interface and behavior of an Set, but
with ordering by first insertion.
You can now pass a list of strings to the install_dir: kwarg to
build_target and custom_target.
Custom Targets:
===============
Allows you to specify the installation directory for each
corresponding output. For example:
custom_target('different-install-dirs',
output : ['first.file', 'second.file'],
...
install : true,
install_dir : ['somedir', 'otherdir])
This would install first.file to somedir and second.file to otherdir.
If only one install_dir is provided, all outputs are installed there
(same behaviour as before).
To only install some outputs, pass `false` for the outputs that you
don't want installed. For example:
custom_target('only-install-second',
output : ['first.file', 'second.file'],
...
install : true,
install_dir : [false, 'otherdir])
This would install second.file to otherdir and not install first.file.
Build Targets:
==============
With build_target() (which includes executable(), library(), etc),
usually there is only one primary output. However some types of
targets have multiple outputs.
For example, while generating Vala libraries, valac also generates
a header and a .vapi file both of which often need to be installed.
This allows you to specify installation directories for those too.
# This will only install the library (same as before)
shared_library('somevalalib', 'somesource.vala',
...
install : true)
# This will install the library, the header, and the vapi into the
# respective directories
shared_library('somevalalib', 'somesource.vala',
...
install : true,
install_dir : ['libdir', 'incdir', 'vapidir'])
# This will install the library into the default libdir and
# everything else into the specified directories
shared_library('somevalalib', 'somesource.vala',
...
install : true,
install_dir : [true, 'incdir', 'vapidir'])
# This will NOT install the library, and will install everything
# else into the specified directories
shared_library('somevalalib', 'somesource.vala',
...
install : true,
install_dir : [false, 'incdir', 'vapidir'])
true/false can also be used for secondary outputs in the same way.
Valac can also generate a GIR file for libraries when the `vala_gir:`
keyword argument is passed to library(). In that case, `install_dir:`
must be given a list with four elements, one for each output.
Includes tests for all these.
Closes https://github.com/mesonbuild/meson/issues/705
Closes https://github.com/mesonbuild/meson/issues/891
Closes https://github.com/mesonbuild/meson/issues/892
Closes https://github.com/mesonbuild/meson/issues/1178
Closes https://github.com/mesonbuild/meson/issues/1193
This just makes an OrderedDict look more like a set class. This results
in neater code than if we use OrderedDict to hold sets directly.
There is a "real" OrderedSet implementation available here, but it lacks
a clear license: https://code.activestate.com/recipes/576694/
Points to the `mesonintrospect.py` script corresponding to the
currently-running version of Meson.
Includes a test for all three methods of running scripts/commands.
Closes https://github.com/mesonbuild/meson/issues/1385
Factor it out into a function in mesonlib.py. This will allow us to
reuse it for generators and for configure_file(). The latter doesn't
implement this at all right now.
Also includes unit tests.
os.path.commonpath was added in Python 3.5, so just write our own for
now. pathlib was added in Python 3.4, so this should be ok. We need to
use that instead of doing str.split() etc because Windows path handling
has a lot of exceptions and pathlib handles all that for us.
Also adds a unit test for this.
With the 'install_mode' kwarg, you can now specify the file and
directory permissions and the owner and the group to be used while
installing. You can pass either:
* A single string specifying just the permissions
* A list of strings with:
- The first argument a string of permissions
- The second argument a string specifying the owner or
an int specifying the uid
- The third argument a string specifying the group or
an int specifying the gid
Specifying `false` as any of the arguments skips setting that one.
The format of the permissions kwarg is the same as the symbolic
notation used by ls -l with the first character that specifies 'd',
'-', 'c', etc for the file type omitted since that is always obvious
from the context.
Includes unit tests for the same. Sadly these only run on Linux right
now, but we want them to run on all platforms. We do set the mode in the
integration tests for all platforms but we don't check if they were
actually set correctly.
Don't need to define __init__ and manually call the parent init. Doing
so messes up the error message you get by doing str(exception) because
it includes the current class name in it repeatedly.
Instead of adding it everywhere manually, create a wrapper called
mesonlib.Popen_safe and use that everywhere that we call an executable
and extract its output.
This will also allow us to tweak it to do more/different things if
needed for some locales and/or systems.
Closes#1079
Sometimes we want to restrict the acceptable versions to a list of
versions, or a smallest-version + largest-version, or both. For
instance, GStreamer's opencv plugin is only compatible with
3.1.0 >= opencv >= 2.3.0
Not only does extract_all_objects() now work properly again,
extract_objects() also works if you specify a subset of sources all of
which have been compiled into a single unified object.
So, for instance, this allows you to extract all the objects
corresponding to the C sources compiled into a target consisting of
C and C++ sources.
Fixes https://github.com/mesonbuild/meson/issues/526
Also removes useless and incorrect mesonlib.is_32bit() function. We
cannot trust that the architecture that Python is built for is the same
as the one we're targetting.
Add support for passing a description to configuration data
setter methods via a 'description' kwarg. The description
string will be used when meson generates the entire configure
file without a template, autoconf-style.