By avoiding Java-style variable naming, the code becomes considerably
more readable while simultaneously becoming *more* easy to understand.
It's no longer necessary to ask questions like "what's a captured
buildtype" when trying to read through the code for a backend, because
it can be dismissed as not relevant to the current context by re-reading
it as "context for vslite".
The primary goal here has been to revert regressions in the developer
experience for users of the ninja backend, so there may still be issues
in vs2010backend.py
Post-facto application of issues that were raised during review,
ignored, and merged despite such.
* Capture all compile args from the first round of ninja backend generation for all languages used in building the targets so that these args, defines, and include paths can be applied to the .vcxproj's intellisense fields for all buildtypes/configurations.
Solution generation is now set up for mutiple build configurations (buildtypes) when using '--genvslite'.
All generated vcxprojs invoke the same high-level meson compile to build all targets; there's no selective target building (could add this later). Related to this, we skip pointlessly generating vcxprojs for targets that aren't buildable (BuildTarget-derived), which aren't of interest to the user anyway.
When using --genvslite, no longer inject '<ProjectReference ...>' dependencies on which a generated .vcxproj depends because that imposes a forced visual studio build dependency, which we don't want, since we're essentially bypassing VS's build in favour of running 'meson compile ...'.
When populating the vcxproj's shared intellisense defines, include paths, and compiler options fields, we choose the most frequent src file language, since this means more project src files can simply reference the project shared fields and fewer files of non-primary language types need to populate their full set of intellisense fields. This makes for smaller .vcxproj files.
Paths for generated source/header/etc files, left alone, would be added to solution projects relative to the '..._vs' build directory, where they're never generated; they're generated under the respective '..._[debug/opt/release]' ninja build directories that correspond to the solution build configuration. Although VS doesn't allow conditional src/header listings in vcxprojs (at least not in a simple way that I'm aware of), we can ensure these generated sources get adjusted to at least reference locations under one of the concrete build directories (I've chosen '..._debug') under which they will be generated.
Testing with --genvslite has revealed that, in some cases, the presence of 'c:\windows\system32;c:\windows' on the 'Path' environment variable (via the make-style project's ExecutablePath element) is critical to getting the 'meson compile ...' build to succeed. Not sure whether this is some 'find and guess' implicit defaults behaviour within meson or within the MSVC compiler that some projects may rely on. Feels weird but not sure of a better solution than forcibly adding these to the Path environment variable (the Executable Path property of the project).
Added a new windows-only test to windowstests.py ('test_genvslite') to exercise the --genvslite option along with checking that the 'msbuild' command invokes the 'meson compile ...' of the build-type-appropriate-suffixed temporary build dir and checks expected program output.
Check and report error if user specifies a non-ninja backend with a 'genvslite' setup, since that conflicts with the stated behaviour of genvslite. Also added this test case to 'WindowsTests.test_genvslite'
I had problems tracking down some problematic environment variable behaviour, which appears to need a work-around. See further notes on VSINSTALLDIR, in windowstests.py, test_genvslite.
'meson setup --help' clearly states that positional arguments are ... [builddir] [sourcedir]. However, BasePlatformTests.init(...) was passing these in the order [sourcedir] [builddir]. This was producing failures, saying, "ERROR: Neither directory contains a build file meson.build." but when using the correct ordering, setup now succeeds.
Changed regen, run_tests, and run_install utility projects to be simpler makefile projects instead, with commands to invoke the appropriate '...meson.py --internal regencheck ...' (or install/test) on the '[builddir]_[buildtype]' as appropriate for the curent VS configuration. Also, since the 'regen.vcxproj' utility didn't work correctly with '--genvslite' setup build dirs, and getting it to fully work would require more non-trivial intrusion into new parts of meson (i.e. '--internal regencheck', '--internal regenerate', and perhaps also 'setup --reconfigure'), for now, the REGEN project is replaced with a simpler, lighter-weight RECONFIGURE utility proj, which is unlinked from any solution build dependencies and which simply runs 'meson setup --reconfigure [builddir]_[buildtype] [srcdir]' on each of the ninja-backend build dirs for each buildtype.
Yes, although this will enable the building/compiling to be correctly configured, it can leave the solution/vcxprojs stale and out-of-date, it's simple for the user to 'meson setup --genvslite ...' to fully regenerate an updated, correct solution again. However, I've noted this down as a 'fixme' to consider implementing the full regen behaviour for the genvslite case.
* Review feedback changes -
- Avoid use of 'captured_compile_args_per_buildtype_and_target' as an 'out' param.
- Factored a little msetup.py, 'run(...)' macro/looping setup steps, for genvslite, out into a 'run_genvslite_setup' func.
* Review feedback: Fixed missing spaces between multi-line strings.
* 'backend_name' assignment gets immediately overwritten in 'genvslite' case so moved it into else/non-genvslite block.
* Had to bump up 'test cases/unit/113 genvslites/...' up to 114; it collided with a newly added test dir again.
* Changed validation of 'capture' and 'captured_compile_args_...' to use MesonBugException instead of MesonException.
* Changed some function param and closing brace indentation.
It can only be used for projects that don't have any rules at all, i.e.
they are purely using Meson to:
- configure files
- run (script?) tests
- install files that exist by the end of the setup stage
This can be useful e.g. for Meson itself, a pure python project.
Instead of using FeatureNew/FeatureDeprecated in the module.
The goal here is to be able to handle information about modules in a
single place, instead of having to handle it separately. Each module
simply defines some metadata, and then the interpreter handles the rest.
Add depfile support to generated targets for Qt >= 5.14.
Move warning into the module init itself, to check if the version is too
old before issuing. Also tweak the wording itself, to advise upgrading
to a suitable version of Qt5 instead of advising to wait for a Qt bug to
be fixed.
Some warnings are out of the user's control, such as the RCC QT bug,
or the GNU windres bug, or our informational warning about
auto-disabling of options when -Db_bitcode is enabled.
Such warnings should not be fatal when --fatal-meson-warnings is
passed because there's no action that the user can take to fix it. The
only purpose it serves is to prevent people who use those features
from using --fatal-meson-warnings.
D lang compilers have an option -release (or similar) which turns off
asserts, contracts, and other runtime type checking. This patch wires
that up to the b_ndebug flag.
Fixes#7082
This also adds a "# noqa: F401" comment on an unused "import lzma",
which we are using it in a try/except block that is being used to
check if the lzma module is importable; of course it is unused.
v2: This turned out to be a little tricky.
mesonbuild/modules/__init__.py had the "unused" import:
from ..interpreterbase import permittedKwargs, noKwargs
However, that meant that the various modules could do things like:
from . import noKwargs # "." is "mesonbuild.modules"
Which breaks when you remove __init__.py's "unused" import. I
could have tagged that import with "# noqa: F401", but instead I
chose to have each of the module import directly from
"..interpreterbase" instead of ".".
configure a detection method, for those types of dependencies that have
more than one means of detection.
The default detection methods are unchanged if 'method' is not
specified, and all dependencies support the method 'auto', which is the
same as not specifying a method.
The dependencies which do support multiple detection methods
additionally support other values, depending on the dependency.
And actually test that prog.path() works. The earlier test was just
running the command without checking if it succeeded.
Also make everything use prog.get_command() or get_path() instead of
accessing the internal member prog.fullpath directly.
Instead of adding it everywhere manually, create a wrapper called
mesonlib.Popen_safe and use that everywhere that we call an executable
and extract its output.
This will also allow us to tweak it to do more/different things if
needed for some locales and/or systems.
Closes#1079
Instead of blindly searching in PATH, use
Qt5Dependency.compilers_detect() (same for qt4) to get moc/uic/rcc.
This is much more robust, and it improves the chances that the correct
ones will be found. We still manually verify for now because the
fallback in dependencies.py for searching is stll to look in PATH for
backwards-compat, and because people probably have setups like that.
Also sync the qt4 module with the qt5 module w.r.t. resource compilation
and make the compiled qrc.cpp file unique in terms of the framework
version used (4 vs 5). This is needed for the test to work properly,
which now covers both Qt4 and 5.
Without this a strange exception is spewed that no one would be able to
understand. Finding each of those compilers isn't a problem unless
sources are specified that require those compilers, so only error out in
those cases.
Closes#758