To allow the javac -implicit:class behaviour to know where to find
generated .java files then the build directory for the target is also
added to the -sourcefile path.
Although only one file is passed to javac at a time, if your code has
any inter-file dependencies javac still needs to know how to find other
source files for its -implicit:class feature to work whereby it will
automatically also compile files that the given file depends on.
-implicit:class is the default, practical, behaviour of javac since
otherwise it would be necessary to declare the class dependencies
for parallel java builds to be feasible.
Passing "include_directory: include_directory('.')" to jar() causes
-souredir <path/to/top/of/java/src> to be passed to javac which then
enables your source code to have inter-file class dependencies -
assuming none of your source code is generated.
This ensures that '.' is included by default.
The -sourcepath option can't be passed multiple times to javac, since it
simply overrides prior arguments. Instead -sourcepath takes a colon (or
semi-colon on windows) separated list of paths.
The entire subdirectory was getting duplicated, which was exceeding the
max path limit in Python on Windows and causing build failures.
Example:
subprojects/gst-plugins-bad/gst-libs/gst/uridownloader/subprojects@gst-plugins-bad@gst-libs@gst@uridownloader@@gsturidownloader-1.0@sha/subprojects/gst-plugins-bad/gst-libs/gst/uridownloader/gsturidownloader-1.0-0.dll.symbols
This path is too long and opening it will cause a FileNotFoundError on
Windows.
To maintain backward compatibility we cannot add recursive objects by
default. Print a warning when there are recursive objects to be pulled
and the argument is not set. After a while we'll do pull recursive
objects by default.
- determine_ext_objs: What matters is if extobj.target is a unity build,
not if the target using those objects is a unity build.
- determine_ext_objs: Return one object file per compiler, taking into
account generated sources.
- object_filename_from_source: No need to special-case unity build, it
does the same thing in both code paths.
- check_unity_compatible: For each compiler we must extract either none
or all its sources, taking into account generated sources.
This option controls the permissions of installed files (except for
those specified explicitly using install_mode option, e.g. in
install_data rules.)
An install-umask of 022 will install all binaries, directories and
executable files with mode rwxr-xr-x, while all data and non-executable
files will be installed with mode rw-r--r--.
Setting install-umask to the string 'preserve' will disable this
feature, keeping the permissions of installed files same as the files in
the build tree (or source tree for install_data and install_subdir.)
Note that, in this case, the umask used when building and that used when
checking out the source tree will leak into the install tree.
Keep the default as 'preserve', to show that no behavior is changed and
all tests keep passing unchanged.
Tested: ./run_tests.py
This implements support for visual studio solution directories.
Projects will by default be put into directories that map their sub-directory
name in the source folder. No directories are created if `--layout=flat` is used.
Fixes: #2524
This patch exploits the information residing in ltversion to set the
-compatibility_version and -current_version flags that are passed to the
linker on macOS.
This way they override all other arguments. This matches the order of
link arguments too.
Note that this means -I flags will come in afterwards and not override
anything else, but this is correct since that's how toolchain paths
work normally too -- they are searched last.
Closes https://github.com/mesonbuild/meson/issues/3089
The linkers currently do not support ninja compatible output of
dependencies used while linking. Try to guess which files will be used
while linking in python code and generate conservative dependencies to
ensure changes in linked libraries are detected.
This generates dependencies on the best match for static and shared
linking, but this should not be a problem, except for spurious
rebuilding when only one of them changes, which should not be a problem.
Also makes sure to ignore any libraries generated inside the build, to
keep the optimisation working where changes in a shared library only
cause relink if the symbols have changed as well.
Restore subproject exclusion for the html coverage report that existed
in the ninja backend legacy target.
Also exclude subprojects for the gcovr generated reports.
ninja coverage -> generate all possible reports (text, xml, html)
depending on gcovr and/or lcov/genhtml availability.
ninja coverage-html -> generate only html report
ninja coverage-xml -> generate only xml report
ninja coverage-text -> generate only text report
Make all targets phony, the old legacy rules where just annoying as
you would have to remove the old report before being able to generate
a new one.
ninja coverage succeeds if it can generate at least one report.
ninja coverage-* only succeeds if it can generate the requested report
Fixes the bug with flat layout and identical target names in subprojects.
Without this change directories are not created with subproject prefix
and they can collide.
Remove dead makedirs code in Backend.__init__(), during initialization
of backend build.targets is empty. Create output directories in
Vs2010Backend.generate_projects() instead.
Also use double blank line in run_unittests.py according to
https://www.python.org/dev/peps/pep-0008/#blank-lines.
Modern gcovr includes html generation support so if lcov and
genhtml are not available fallback to gcovr.
Kept lcov and genhtml as default so to not surprise existing
users of coverage-html with the different output of gcovr.
gcovr added html support in 3.0 but as there already is a test
for 3.1 because of the changes to -r/--rootdir I opted to only
allow html generation for >= 3.1 to keep things simple.
In gcovr 3.1 the -r/--rootdir argument changed meaning causing
reports generated with gcovr 3.1 to not find the source files
and look for *.gcda in the whole source tree rather than the
build dir.
So, detect gcovr version and if 3.1 give build_root to -r instead
of source_root.