This is useful for internal scripts that want to know about something
other than MESON_INSTALL_PREFIX and MESON_INSTALL_DESTDIR_PREFIX, which
is very specific to the prefix.
Checking the executable basename sort of works, at least for Windows,
since Windows always happens to use exactly this approach. However, the
official pyinstaller documentation suggests a very different approach:
https://pyinstaller.org/en/stable/runtime-information.html
This approach is more robust since it works on any OS, and in particular
it allows me to test the PyInstaller bundle functionality on Linux, even
though we don't officially distribute it as such.
We need to remember its value when reconfiguring, but the Build object
is not reused, only coredata is.
This also makes CLI more consistent by allowing `-Dvsenv=true` syntax.
Fixes: #11309
In commit 97a72a1c53 we started to allow
cmakedefine with 3 tokens, as cmake expects (unlike mesondefine). This
would silently start working even if the declared minimum version was
older than 0.54.1
It's actually Generic, and we should use Generic annotations to get the
correct result. This means that we don't have to assert or cast the
return type, because mypy just knowns
This can raise any OSError, but we only caught two of them that indicate
a particular failure case. Also catch the generic error form with a more
generic message.
This produces better error messages in cases where e.g. exclusive lock
is not supported.
We shouldn't be hardcoding library dirs anyway. And we usually get this
from the compiler.
This function has been unused since its users were moved to use the
compiler method, in the following commits:
- a1a4f66e6d
- a3856be1d5
- 08224dafcb
It is often more useful to generate shell script than dumping to stdout.
It is also important to be able to select the shell format.
Formats currently implemented:
- sh: Basic VAR=prepend_value:$VAR
- export: Same as 'sh', but also export VAR
- vscode: Same as 'sh', but without substitutions because they don't
seems to work. To be used in launch.json's envFile.
EnvironmentVariables was always broken, it used MutableMapping because
everyone <3 abstract interfaces, especially when they are broken and
don't actually do what you want.
This needs a dict interface, exposing `.copy()`. We either use a dict or
os._Environ, and the latter also supports that.
Also fix a broken import, and the fallout from forgetting to update the
signature of self.envvars in commit b926374205.
After tracing all the way down to the bottom of this (or really, adding
annotations so mypy can) it turns out that passing file would just be
ignored at the end of the mlog call stack, so it should be removed
ctypes uses FFI, and surprisingly often people's Python installations
will be broken because ctypes is broken (e.g. the system libffi has been
updated and Python needs to be recompiled). That is not our fault, but
it does manifest as Meson failing to run. It turns out we aren't even
using it though. At least, pretty often.
We have two uses of ctypes, and both of them are for Windows. One of
them is already conditionally imported in the function that uses it, but
the other is imported at startup. Move this down into the invoking
function.
On non-Windows systems, it is now impossible for Meson to fail to run
when ctypes is broken, because we don't use it. Anecdotally, this issue
tends to come up on Linux systems primarily.
Fixes#11111Closes#11112
T.Sequence is a questionable concept. The idea is to hammer out generic,
maximally forgiving APIs that operate on protocols, which is a fancy way
of saying "I don't care if you use tuples or lists". This is rarely
needed, actually, and in exchange for this fancy behavior you get free
bugs.
Specifically, `somestr` is of type `T.Sequence[str]`, and also
`somestr[0]` is another string of type you guessed it. It's ~~turtles~~
strings all the way down.
It's worth noting that trying to code for "protocols" is a broken
concept if the contents have semantic meaning, e.g. it operates on
"the install tags of this object" rather than "an iterable that supports
efficient element access".
The other way to use T.Sequence is "I don't like that T.List is
invariant, but also I don't like that T.Tuple makes you specify exact
ordering". This sort of works. In fact it probably does work as long as
you don't allow str in your sequences, which of course everyone allows
anyway.
Use of Sequence has cute side effects, such as actually passing lists
around, knowing that you are going to get a list and knowing that you
need to pass it on as a list, and then having to re-allocate as
`list(mylist)` "because the type annotations says it could be a str or
tuple".
Except it cannot be a str, because if it is then the application is
fatally flawed and logic errors occur to disastrous end user effects,
and the type annotations:
- do not enforce their promises of annotating types
- fail to live up to "minimal runtime penalties" due to all the `list()`
Shun this broken concept, by hardening the type annotations. As it turns
out, we do not actually need any of this covariance or protocol-ism for
a list of strings! The whole attempt was a slow, buggy waste of time.
Which adds the `use-set-for-membership` check. It's generally faster in
python to use a set with the `in` keyword, because it's a hash check
instead of a linear walk, this is especially true with strings, where
it's actually O(n^2), one loop over the container, and an inner loop of
the strings (as string comparison works by checking that `a[n] == b[n]`,
in a loop).
Also, I'm tired of complaining about this in reviews, let the tools do
it for me :)
This finds uses of deny-listed functions, which defaults to map and
filter. These functions should be replaced by comprehensions in
idiomatic python because:
1. comprehensions are more heavily optimized and are often faster
2. They avoid the need for lambdas in some cases, which make them
faster
3. you can do the equivalent in one statement rather than two, which
is faster
4. They're easier to read
5. if you need a concrete instance (ie, a list) then you don't have
to convert the iterator to a list afterwards
We have divergent implementations of loading a pickled *.dat file. The
Build class loader has a better error message. But the generic loader
handles TypeError and ModuleNotFoundError. Merge the implementations,
and use it for Build as well.
Fixes#11051
We would like to use the default value (the one python urged us not to
use), but without getting a warning for it. Luckily, we have the correct
value already, so we can pass it manually to avoid the complaint.
Move `detect_native_windows_arch()` to `mesonlib/universal.py` and
rename it to `windows_detect_native_arch()`
Use `IsWow64Process2()` to detect native architecture if available
Use native `vcvarsarm64.bat` to initialize vsenv if available
Those classes are used by wrapper scripts and we should not have to
import the rest of mesonlib, build.py, and all their dependencies for
that.
This renames mesonlib/ directory to utils/ and add a mesonlib.py module
that imports everything from utils/ to not have to change `import
mesonlib` everywhere. It allows to import utils.core without importing
the rest of mesonlib.