When auto-generating e.g. a `clang-format` target, we first check to see
if the user has already defined one, and if so we don't bother creating
our own. We check for two things:
- if a ninja target already exists, skip
- if a run_target was defined, skip
The second check is *obviously* a duplicate of the first check. But the
first check never actually worked, because all_outputs was only
generated *after* generating all utility rules and actually writing out
the build.ninja file. The check itself compares against nothing, and
always evaluates to false no matter what.
Fix this by reordering the target creation logic so we track outputs
immediately, but only error about them later. Now, we no longer need to
special-case run_target at all, so we can drop that whole logic from
build.py and interpreter.py, and simplify the tracked state.
Fixes defining an `alias_target()` for a utility, which tried to
auto-generate another rule and errored out. Also fixes doing the same
thing with a `custom_target()` although I cannot imagine why anyone
would want to produce an output file named `clang-format` (unless clang
itself decided to migrate to Meson, which would be cool but feels
unlikely).
Since it's also used in the rust module, it should be in a common place.
Also rename from `TEST_KWARGS` to `TEST_KWS`, which is more in line with
the `*_KW` naming scheme used in the type_checking module.
This finds uses of deny-listed functions, which defaults to map and
filter. These functions should be replaced by comprehensions in
idiomatic python because:
1. comprehensions are more heavily optimized and are often faster
2. They avoid the need for lambdas in some cases, which make them
faster
3. you can do the equivalent in one statement rather than two, which
is faster
4. They're easier to read
5. if you need a concrete instance (ie, a list) then you don't have
to convert the iterator to a list afterwards
Regression test: libccpp has both C and C++ sources. The executable only
has C sources. It should still link using the C++ compiler. When using
both_libraries the static has no sources and thus no compilers,
resulting in the executable linking using the C compiler.
https://github.com/Netflix/vmaf/issues/1107
This was introduced in commit 3a6e2aeed9
as part of 0.50.0, but did not contain a FeatureNew. As a result, people
would use it without realizing that they broke support for versions of
Meson included in their minimum requirements.
This is based on searching for `@FeatureNew*` decorators.
There is also one correction to a version in a decorators;
`build_by_default` was added in #1303, which is 0.38.0, not 0.40.0.
This introduce a new type of BuildTarget: CompileTarget. From ninja
backend POV it is the same thing as any other build target, except that
it skips the final link step. It could be used in the future for
transpilers too.
When using both_libraries(), or library() with default_library=both, we
remove all sources from args and kwargs when building the static
library, and replace them by the objects from the shared library. But
sources could also come from any InternalDependency, in which case we
currently build them twice (not efficient) and link both objects into
the static library.
It also means that when we needlessly build those source for the static
library, it miss order dependency on generated headers that we removed
from args/kwargs, which can cause build errors in the case the source
from static lib is compiled before the header in shared lib gets
generated.
This happened in GLib:
https://gitlab.gnome.org/GNOME/glib/-/merge_requests/2917.
cc.compiles(), and other compiler checks that use cc.compiles() under
the hood, do not use link args at all when doing the compile check, so
messages like this:
```
Checking if "have zlib" with dependency -lz compiles: YES
```
is very misleading. The compiler check command-line for that is:
```
cc [...]/testfile.c -o [...]/output.obj -c -D_FILE_OFFSET_BITS=64 -O0
```
Note the lack of linker args.
When _subproject_impl() is called the wrap file could not have been
downloaded form wrapdb yet, it is done when fetching the subproject.
Delay getting the variable name to when we actually need it, at that
point we are sure the wrap file has been downloaded.
Those classes are used by wrapper scripts and we should not have to
import the rest of mesonlib, build.py, and all their dependencies for
that.
This renames mesonlib/ directory to utils/ and add a mesonlib.py module
that imports everything from utils/ to not have to change `import
mesonlib` everywhere. It allows to import utils.core without importing
the rest of mesonlib.
In commit 47426f3663 we migrated to
typed_kwargs, but the validator accepted a list and checked to see if it
was a single Dependency object.
Fixes#10813
To differentiate it from the function parameter itself. Annotating a
function as
```
def func_foo(kwargs: kwargs.FooKwargs):
```
is confusing, both visually and to static linters.
This is supposed to expose all primitives together, but to do that we
need to actually "use" each variable in `__all__`, which we... didn't.
Sorry about that.
Strictly speaking code restructuring isn't needed, but making this PEP8
compliant results in indentation of the code that reduces the
readability. By moving the offending code on the outside of the method
call, the readability is maintained.
This is generally a bad idea, e.g. it causes OSError on freebsd.
It also gets ignored by solaris and thus causes unittest failures.
The proper solution is to simply reject any attempt to set this, and log a
warning.
The install_emptydir function does apply the mode as well, and since it
is a directory it actually does something. This is the only place where
we don't reset the mode.
Although install_subdir also installs directories, and in theory it
could set the mode as well, that would be a new feature. Also it doesn't
provide much granularity and has mixed semantics with files. Better to
let people use install_emptydir + install_subdir.
Fixes#5902
Generally plumb through the values of get_option() passed to
install_dir, and use this to establish the install plan name. Fixes
several odd cases, such as:
- {datadir} being prepended to "share" or "include"
- dissociating custom install directories and writing them out as
{prefix}/share/foo or {prefix}/lib/python3.10/site-packages
This is the second half of #9478Fixes#10601
`configure_file` is both an extremely complicated implementation, and
a strange place for copying. It's a bit of a historical artifact, since
the fs module didn't yet exist. It makes more sense to move this to the
fs module and deprecate this `configure_file` version.
This new version works at build time rather than configure time, which
has the disadvantage it can't be passed to `run_command`, but with the
advantage that changes to the input don't require a full reconfigure.
This was never meant to work, it's an implementation detail of using
`importlib.import_module` and that our modules used to be named
`unstable_` that this ever worked.
Thanks to `ModuleInfo`, all modules are just named `foo.py` instead of
`unstable_foo.py`, which simplifies the import method a bit. This also
allows for accurate FeatureNew/FeatureDeprecated use, as we know when
the module was added and if/when it was stabilized.
Instead of using FeatureNew/FeatureDeprecated in the module.
The goal here is to be able to handle information about modules in a
single place, instead of having to handle it separately. Each module
simply defines some metadata, and then the interpreter handles the rest.
This error message was quite confusing when triggered by
use of an absolute path to the include dir of an external dependency
(numpy in my case). Changing that to a relative dir also isn't
a solution, because Meson will *not* do the "busywork to make paths
work" that the error message says it will.
We have to handle this, because Windows needs to link to the implib of
the executable (???) in order to create a shared module. This is
explicitly checked for and handled in the backend, and creating a build
target with `link_with: some_exe` still works, even. But updating
declare_dependency to typed_kwargs neglected to take that into account,
so creating a convenience interface for those same arguments failed.
We can use this lots of places, and it's always the same kwarg. There
doesn't seem to be a point in naming it badly, then evolving it to the
standard name in the one place it is currently used. This made it not
shareable.